

An Atlas of the Infra-Red Solar Spectrum from 1 to 6\$\cdot \$5 \$\mu \$ Observed from a High-Altitude Aircraft

J. T. Houghton, N. D. P. Hughes, T. S. Moss and J. S. Seeley

Phil. Trans. R. Soc. Lond. A 1961 **254**, 47-123 doi: 10.1098/rsta.1961.0012

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[47]

AN ATLAS OF THE INFRA-RED SOLAR SPECTRUM FROM 1 TO 6.5μ OBSERVED FROM A HIGH-ALTITUDE AIRCRAFT

By J. T. HOUGHTON,* N. D. P. HUGHES, T. S. MOSS AND J. S. SEELEY[†]

Royal Aircraft Establishment, Farnborough, Hants

(Communicated by M. J. Lighthill, F.R.S.-Received 15 November 1960)

Records are presented of the infra-red solar spectrum from 1 to 6.5μ , observed from altitudes up to 15 km. A resolution of about 1 cm^{-1} has been obtained over the whole region and 1200 absorption lines belonging to water vapour, CO₂, CO, N₂O and CH₄ have been identified.

1. INTRODUCTION

The infra-red solar spectrum has been the subject of intensive study from observatories on the earth's surface (see, for example, Migeotte, Neven & Swensson 1956). Large portions of the infra-red region, however, are completely obscured, even at high mountain observatories, by absorption bands of water vapour and carbon dioxide. At altitudes above 40000 ft., which are easily reached by modern jet aircraft, the water vapour absorption bands are largely transparent and the carbon dioxide absorption bands are much reduced, so that more of the solar spectrum is available for study. This project was initiated by Dr F. E. Jones in consultation with the Gassiot Committee of the Royal Society as a contribution to the programme of the International Geophysical Year.

This atlas of the infra-red solar spectrum from 1 to 6.5μ is a record of observations made during ninety-eight flights with a high-resolution grating spectrometer installed in a Canberra aircraft of the Royal Aircraft Establishment, Farnborough, at altitudes of 20000 to 49000 ft. The instrumentation, which has been described in detail by Houghton, Moss & Chamberlain (1958), was, briefly, as follows. A gauze-covered hole in the unpressurized part of the aircraft fuselage allowed sunlight to fall on a plane mirror 6 in. square, which formed part of a sun-following system. The spectrometer, which had an f/6 optical system, used a prism pre-monochromator and a 7500 lines/in. diffraction grating, 4 in. \times 3 in. in size. A resolution of about 1 cm⁻¹ was obtained within the wavelength range 1 to 6.5μ . Lead salt photoconductive detectors were used for the following spectral ranges: 1 to 3μ , uncooled lead sulphide; 3 to 5μ , cooled lead telluride, 5 to 6.5μ , cooled lead selenide. A few results were also obtained with a gold-doped germanium detector. Great care was taken to ensure that the spectrometer was free of water vapour or other absorbing gases.

The spectrum was scanned by rotating the grating while the signal from the detector amplifier was recorded by a multi-channel film recording galvanometer. The galvanometer recorded on photographic paper, 60 mm wide, moving usually at $\frac{1}{4}$ in./s, but at $\frac{1}{16}$ in./s for the longest wavelengths. During preliminary work a potentiometer penrecorder was used, but the spectra presented here were all made with the film recorder,

> * Now at Clarendon Laboratory, Oxford. † Now at Queen Mary College, London.

Vol. 254. A. 1037. (Price £ 1. 5s.)

7

[Published 9 November 1961

J. T. HOUGHTON AND OTHERS

which had the advantage of a much faster response. Additional channels indicated the output from a photocell monitoring the total sunlight entering the spectrometer and the angular position of the grating at intervals of 3 minutes of arc. The latter marks, which enabled a fairly accurate wavelength scale to be established, have been removed from the records which are reproduced in the atlas at approximately the original size.

Variations in the monitoring signal were due either to imperfect functioning of the sun-follower in compensating for aircraft movements or to variations in the degree of obscuration of the gauze 'window'. The variations in the monitor and detector signals are not necessarily in proportion and in general the monitor signal shows greater variation than the spectral record, probably because the former is determined mainly by the peak solar radiation which, for example, is much more susceptible to scattering by traces of high cloud than the infra-red radiation. Where the monitor shows little variation the spectra can be used directly to determine absolute absorption levels; where variations occur, careful comparison of the two traces will still enable a background energy curve to be drawn over small wavelength intervals in many cases.

2. The figures

The region from 1 to 6.5μ has been divided into 35 sections, with a small overlap on each section. Wherever possible, an opening shows four observations of the same section, together with the appropriate portion of the table of line identification (table 2).

In general the three upper traces, on the left-hand page, show records obtained from the aircraft, divided into the altitude categories: (a) above 40000 ft., (b) 30000 to 40000 ft. and (c) 20000 to 30000 ft. On the right-hand page a ground level record (d), obtained near Farnborough (240 ft. above sea level) with the same instrument has been included for comparison. In the spectral regions where no solar radiation reaches the ground, suitable laboratory spectra are included in place of the solar spectrum (d). Table 1, pp. 51 and 52, identifies the conditions under which the spectra in each figure were observed.

Each section comprises about 8 in. of the original record, which for figures 1 to 33 would have taken 30 s to scan. For figures 34 and 35, which were recorded at the slower paper speed, the time would have been 120 s.

The monitor signal is usually the broader line on the trace. The zero level of the detector galvanometer is shown by the base line which has been drawn in, and a short example of the noise level encountered when the detector was not illuminated has been included at the end of the trace where appropriate. The spectral bandwith used in each observation is represented by the gap in the symbol $\neg \vdash$. A wave-number scale has been constructed for each page; small fluctuations in the recording speed often occurred and since these cannot be corrected the scale is to be used only as a guide.

3. The identifications

The most prominent features in each section have been marked with a vertical dash on one, or sometimes two, of the traces in each figure. Every tenth dash is numbered to correspond to table 2. In identifying these features the frequency was first established to

ATLAS OF THE INFRA-RED SOLAR SPECTRUM

within about 5 cm⁻¹ by means of the grating rotation markers. Careful comparison of the records with data from other sources then enabled the identifications in table 2 to be listed. The wave numbers (corrected to vacuum) given in this table are quoted from the various sources noted by a number in the reference column. These numbered references have been listed on p. 53. Particular use has been made of the three photometric atlases covering the region studied in the present work: from 1 to 2.5μ , Mohler, Pierce, McMath & Goldberg (1950), at the Mount Wilson Observatory; 2.8 to 5.3μ , Migeotte *et al.* (1956) at the Jungfraujoch Observatory; and Shaw, Chapman, Howard & Oxholm (1951) at Columbus, Ohio.

Most of the spectra in this atlas are not so well resolved as those given in the sources quoted; many of the features, registered with a single mark, are blends of lines quite clearly resolved by other workers. In each of these cases the wave number assigned to the feature is that of the strongest component, which is listed first in the table. Where the intensities are approximately equal the identifications are given in the order of the wave numbers. The ν_2 band of water vapour near 6μ , however, is revealed in greater detail in the high-altitude solar spectra than in published laboratory spectra. The additional features have been given an interpolated wave number from the known positions of nearby lines.

4. DISCUSSION

The prominent features of the spectra are already well known (see, for example, Goldberg 1954), being bands due to the atmospheric constituents: water vapour, carbon dioxide, carbon monoxide, methane and nitrous oxide. Quantitative studies of some of the water-vapour lines have been made by Houghton & Seeley (1960), and of some of the lines of methane, nitrous oxide and carbon monoxide by Seeley & Houghton (1961).

Some lines due to absorption in the solar atmosphere are prominent in the highaltitude observations and are marked with the symbol \odot in table 2. Among these are three absorption lines of hydrogen which are obscured by water vapour in the groundlevel spectrum and have not previously been observed. They are the second (4-6 transition) and fourth (4-8) members of the Brackett series and the first member (3-4 transition) of the Paschen-Ritz series. The line 4-6 occurs at 3808 cm⁻¹ and overlaps the water-vapour line at 3806.7 cm⁻¹ (figure 11, no. 24); it can be distinguished by comparing the solar spectra with figure 11 (d), which is a record of the residual water-vapour absorption in the spectrometer at 45000 ft. obtained by mounting a small tungsten filament lamp at the entrance slit. The other two new hydrogen lines appear on figure 6, lines no. 26 and no. 52.

The *R*-branch of the v_3 band of methane, previously obscured by absorption due to the $2v_2$ water-vapour band, is revealed clearly in the high-altitude observations in figure 16. In figure 22 the v_3 band of carbon dioxide is the only extended region of complete absorption which remained at the highest altitude (49000 ft.). The short-wavelength absorption edge is advanced by about 5 cm⁻¹ towards the band centre at this altitude.

There are a number of spectral features listed in table 2 for figures 23 and 24 which have a separation *less* than the spectral bandwidth of the spectrometer. Calculations show that the bandwidth used is sufficient to give the partial resolution observed. The repetition of these features in the several observations confirms their reality.

J. T. HOUGHTON AND OTHERS

Laboratory spectra, obtained with a short path (6 ft. of air at atmospheric pressure) are included in figures 31 to 35, since they have been helpful in identifying the new features observed at altitude in this region.

The data in the atlas are the culmination of a comprehensive flying programme, during which many members of the engineering services and aircrew associated with R.A.E. Radio Flight have given us their patient co-operation. We are grateful to our colleagues Mr I. D. Birch, who kept the equipment in working order and Mr T. D. F. Hawkins who acted as observer on many flights, and for assistance by our printing department in preparing the figures.

The lead selenide detector with a bloomed silicon window and the gold-doped germanium detector were generously provided by Dr B. Bode, Santa Barbara Research Centre, and Dr H. Levinstein, Syracuse University, respectively.

References

Goldberg, L. 1954 The Earth as a planet (edited by G. P. Kuiper), p. 434. University of Chicago Press.

Houghton, J. T., Moss, T. S. & Chamberlain, J. P. 1958 J. Sci. Instrum. 35, 329.

Houghton, J. T. & Seeley, J. S. 1960 Quart. J. R. Met. Soc. 86, 358.

Migeotte, M., Neven, L. & Swensson, J. 1956 The solar spectrum for 2.8 to 23.7 microns. Parts I and II. Special Vol. Mém. Soc. R. Sci. Liège.

Mohler, O. C., Pierce, A. K., McMath, R. R. & Goldberg, L. 1950 Photometric atlas of the near infra-red solar spectrum. λ8465 to λ25242. University of Michigan Press.

Seeley, J. S. & Houghton, J. T. 1961 Infra-red phys. 1, No. 2.

Shaw, J. H., Chapman, R. M., Howard, J. N. & Oxholm, M. L. 1951 Astrophys. J. 113, 268.

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS SOCIETY

TABLE I

solar elevation	(₀)	18	17	65 11	20		40		;	11	40		40	58	47	12	54	57	ļ	47	51	54 11	10	47	51	54	56	48	51	54	56	07	x4 x	10	40 4 97	00	48 13	10	56 56	
altitude	(ft.)	48000	44000	45000	40000 40000	40000	40000			45000	40000		40000	240	40000	25000	20000	240		40000	25000	20000	240	40000	25000	20000	240	35000	25000	20000	240	000020	32000	20000	20000	047	35000 97000	00006	240	
time	(G.M.T.)	12.45	12.25	16.10	07.21	16.00	15.30			14.20	15.30	-	15.30	13.15	14 30	14.00	10.50	13.25		14.30	14.00	10.50	13.20	14.30	14.00	10.50	13.30	14.20	14.00	10.50	13.30		14.20	14.00	13 30	10.01	14.20	14.00 10.50	13.30	
	day	20	19	IZ IZ	17	10	16	9 C	l	30 9	52 97 97 97	74	25	24	9.0	2	0 <u>-</u> 0	24 44		29	29	$\frac{29}{2}$	24	29	29	29	24	29	29	29	24	00	50 70	29	67 97	H	29	67 C	24 24	
	month	January	Ďecember	June	December	Tune	Junc Tulv	Jury Tinne	June	November	July	March	July	May	Tulu	Anguet	Inly	Mav	(mart	July	July	July	May	July	July	July	May	Inlv	Iulv	Iulv	May		July	July	ymy May	A DTAT	July	July	May	•
	year	1958	1957	1958	1957 1057	1058	1058	1958	0001	1957	1958	190U	1958	1960	1058	1058	1058	1960		1958	1958	1958	1960	1958	1958	1958	1960	1958	1958	1958	1960	0201	1928	1020	1060	MORT	1958	1050	1960	
figure	no.	11 (a)	(\mathbf{b}) (\mathbf{i})	(II)				(m)	(n)	12(a)	(q)	<i>(a)</i>	13(a)	(p)	14(a)	$(n) \pm \mathbf{I}$			(m)	15(a)	(q)	$\tilde{(c)}$	(p)	16(a)	(p)	(c)	(q)	17(a)	(q)		(q)		18 (a)	(a)		(n)	$19 \begin{pmatrix} a \\ d \end{pmatrix}$	(<i>a</i>)	(c)	~
solar elevation	(。)	41	45	41	45	57	41	55	45	40	18	57	55	40	57	55	45	60	57	19	55	09	51	41	55	09	57	41	55 25	60	57	41	19	55	60 2 ž	40	57	C I Y	45 45	
altitude	(ft.)	35000	240	35000	240	40000	35000	30000	240	240	44000	40000	30000	240	40000	30000	240	240	40000	32000	30000	240	40000	35000	30000	240	40000	35000	30000	240	40000	35000	32000	30000	240	240	40000	00006	240 240	
time	(G.M.T.)	15.40	09.45	15.40	09.45	11.00	15.40	10.40	09.45	11.05	11.25	11.00	10.40	GU.11	11.00	10.40	09.45	11.15	11.00	11.05	10.40	11.15	11.00	15.40	10.40	11.15	11.00	15.40	10.40	11.15	11.00	15.40	12.05	10.40	11.15	09.45	11.00	10.00	09.45	
	day	12	9	12	9	21	12	21	9	21	19	21	21	12	21	21	9	24	21	19	21	24	21	12	21	24	21	12	21	24	21	12	19	21	47 7	0	21	016	9	
	month	June	May	June	May	July	June	July	May	September	December	July	July G	September	July	July	May	May	.July	December	.July	May	July	June	July	May	July	June	July	May	July	June	December	July	May	May	July ,	December 11	May	•
	year	1958	1959	1958	1959	1958	1958	1958	1959	1960	1957	1958	1958	TADO	1958	1958	1959	1960	1958	1957	1958	1960	1958	1958	1958	1960	1958	1958	1958	1960	1958	1958	1957	1958	1960	RCAT	1958	1020 1050	1959	
figure	no.	$1\left(b ight)$	(q)	2(b)	(q)	3(a)	(q)	(c)	(d) (i)	(ii)	4(a)	(p)	(c)	(<i>a</i>)	5(a)		(\mathbf{i}) (\mathbf{i})		$6\left(a ight)$	(p)	(c)	(p)	7(a)	(q)	(c)	(p)	8(a)	(q)	(c)	(p)	9(a)	(\mathbf{i}) (\mathbf{i})	(ii)		(\mathbf{i}) (\mathbf{i})	(11)	10(a)	(a)	(c)	~ ~

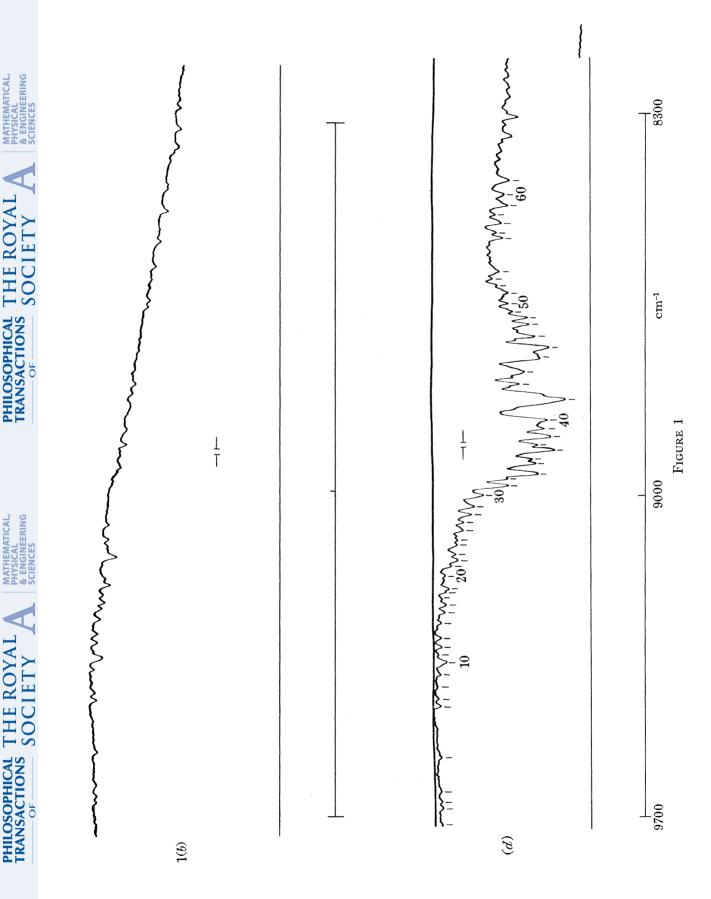
ATLAS OF THE INFRA-RED SOLAR SPECTRUM

	solar elevation	(。)	51	55 55	54	51	53	55	54	38 7 8	04 0	26	28	30	1	$\frac{26}{20}$	7 8 7 8	30	I	26	070	30	!	41 	40	39	-	30	32	35		
	altitude	(ft.)	25000	20000 240	30000	25000	20000	240	30000	30000 940	240	45000	40000	30000		45000	40000	30000		45000	40000	20000		45000	40000	30000		45000	40000	30000		
	time	(G.M.T.)	11.10	10.20 13.35	10.30	11.10	10.20	13.40	10.30	14.30	10.01	15.10	15.00	14.50		15.10	15.00	14.50		15.10	10.00	14.00		11.00	10.50	10.30	-	14.45	14.35	14.20		
		day	15	24 24	29	15	29	24	29	4 c	74	15	15	15	0	15	15	cI v	ი	15	01. 1	010	م	16	16	16	16	16	16	16	9 0	
		month	August	July Mav	Tulv	August	July	May	July	September	May	September	September	September	March	September	September	September	March	September	September	September	Match	September	September	September	December	September	September	September	December March	
		year	1958	1959 1960	1959	1958	1959	1960	1959	1959	1900	1959	1959	1959	1960	1959	1959	1959	1960	1959	1929 1020	1020 1020	DOGT	1959	1959	1959	1959	1959	1959	1959	1959 1960	
TABLE 1 (continued)	figure	no.	28(b)	(c)	(a)	(p)	(c)	(p)	30(b)	(c) (c)	(a)	31(a)	(q)	(c)	(p)	$32\left(a ight)$	(p)	(c)	(p)	$33 \left(a ight)$	(a)	(<i>s</i>)	(n)	34(a)	(q)	(c)	(p)	35(a)	(p)		(d) (i) (ii)	
TABLE 1	solar elevation	(°)	48	51 18	0	51 17	56		48 2	56 56	00	30	40	51		38	40	51	55	38	40	51	55	90	00	40	03 7 7	00	38	40	52 52 52)
				$25000 \\ 240$		95000	240		35000	240 240		45000	40000	25000	1	45000	40000	25000	240	45000	40000	25000	240	15000	40000	40000	30000	240	45000	40000	$\begin{array}{c} 20000\\ 240\end{array}$	
	time	(G.M.T.)	14.20	14.00	00.01	14.00	13.30		14.20	14.00 13.30		15.10	14.50	11.10		15.10	14.50	11.10	13.35	15.10	14.50	11.10	13.35	01 או	01.01	14.00	14.00	13.35	15.10	14.50	10.20	
		day	29	26 26 26		000	24 24		67	24 24	1	15	15	15	0	15	15	15	24	15	15	15	24	10 -	<u>1</u>	c1	77	24	15	15	$29 \\ 24$	ł
		month	July	July Octobe r	(Cucher	July	Mav	(m	July	Jury Mav		August	August	August	March	August	August	August	May	August	August	August	May		August	August	July	May	August	August	July Mav	later
																			_				_									
		year	1958	1958	0201	1050	1960		1958	1960		1958	1958	1958	1960	1958	1958	1958	1960	1958	1958	1958	1960		1908	1958	1959	1960	1958	1958	1959 1960	0007

52

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY



References numbered in Table 2

- Benedict, W. S., Claassen, H. H. & Shaw, J. H. 1952 J. Res. Nat. Bur. Stand. 49, 91. **3 3 D**
 - Benedict, W. S. & Plyler, E. K. 1951 J. Res. Nat. Bur. Stand. 46, 246.
- Mohler, O. C., Pierce, A. K., McMath, R. R. & Goldberg, L. 1950 Photometric atlas of the near infra-red solar spectrum A8465 to A25242. University of Michigan Press. Together with the associated tables:

(a) Mohler, O. C. 1955 A table of solar spectrum wave lengths 11984 Å to 25578 Å. University of Michigan Press.
(b) Babcock, H. D. & Moore, C. E. 1947 The solar spectrum λ6600 to λ13495 Å. Carnegie Instn. of Washington Publ. 579.

- Migeotte, M., Neven, L. & Swensson, J. 1956 The solar spectrum from 2.8 to 23.7 microns. Parts I and II. Special Vols. Mém. Soc. R. Sci. Liège. Nielsen, H. H. 1941 Phys. Rev. 59, 565. (4, 5) (5, 6) (7, 8)
 - Nielsen, H. H. 1942 Phys. Rev. 62, 422.
- Nielsen, H. H. & Yao, Y. T. 1945 Phys. Rev. 68, 173.
- Shaw, J. H., Chapman, R. M., Howard, J. N. & Oxholm, M. L. 1951 Astrophys. J. 113, 268.

Mathematical, Physical & engineering Sciences

TRANSACTIONS COLUTION

ETY

SOCI

- OF -

line no.	line	ло. 90	67 G	30	31	32	20	33	34	35	36	37	. 00	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	00
ref.		rei. 2 k	30	36	36	3b	00 10	3b	3b	3b	3b	36	34	36	36	$\frac{1}{3b}$	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	3b	$\frac{3b}{2}$	3b	3b	•
band			1	1	1	1	I	I	1		1	1			1	1	1	I		1	I	1	I	1]	1		3-6	$\nu_1+\nu_2+\nu_3$	$\nu_1 + \nu_2 + \nu_3$	I	
		S. S.	้มีม	Sr	Ni	Ca	S.a	N.	ï	s	Si Si	Si	5	Sis	U	S:	U	S:	Si Si	Si Si	2.	Mg	Si	He	Si	~.		⊙ Si			H •	H_2^{O}	$\rm H_2O$	1	

 $\nu \, (cm^{-1})
 (vac.)
 9716.5$

line no. -3

9680-7 9664.8 9639-6

	ũ	6.0	619		6.9		6.9	6.9	6.5	6.9	6.9	610	6.9	610	610	610	612	6.0	6.0	610	6.9	6.9	6.9	6.5	6.0	6.9
	band	1	$+\nu_{0}+$	+ 2, +	+ 2°+	$+\nu_{0}^{2}+$	+ 2, +	+ 2°+	$+\nu_{2}$ +	+ ",+	+ 2,4+	$+\nu_{2}^{-}+$	+ 2, +	$+\nu_{2}+$	$+\nu_{2}$ +	$+\nu_{2}^{-}+$	$+\nu_{2}^{-}+$	$+\nu_{2}^{-}+$	+ ",+	$+\nu_{2}$ +	+ ",+	$+\nu_{2}$ +	$+\nu_{2}^{-}+$	+ 2, -+	' 2'	'
	ident.		Н,О	H,O	H,O	H,O	H,O	H _. O	H _. O	H _. O	H _. O	H ₀ H	H,O	H ₂ O	H_2O	H_2O	$H_{2}O$	H ₀ H	H _. O	H _. O	H _. O	H _. O	H ₂ O	H _. O	H_2O	
$\nu \ (\mathrm{cm}^{-1})$	(vac.)	9018.7	8998-4	8982.3	8967.8	8955.7	8941.3	8934.9	8907.8	8899.1	8884.1	8866.0	8851.0	8811.3	8783-4	8764.9	8738.1	8717-5	8697.1	8675.2	8665.4	8651.9	8637.0	8617.6	8603.5	8593-9
line	no.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53

ų.

8577.7 8517.7 8517.7 8507.6 8491.0 8441.0 8443.6 8443.6 8443.6

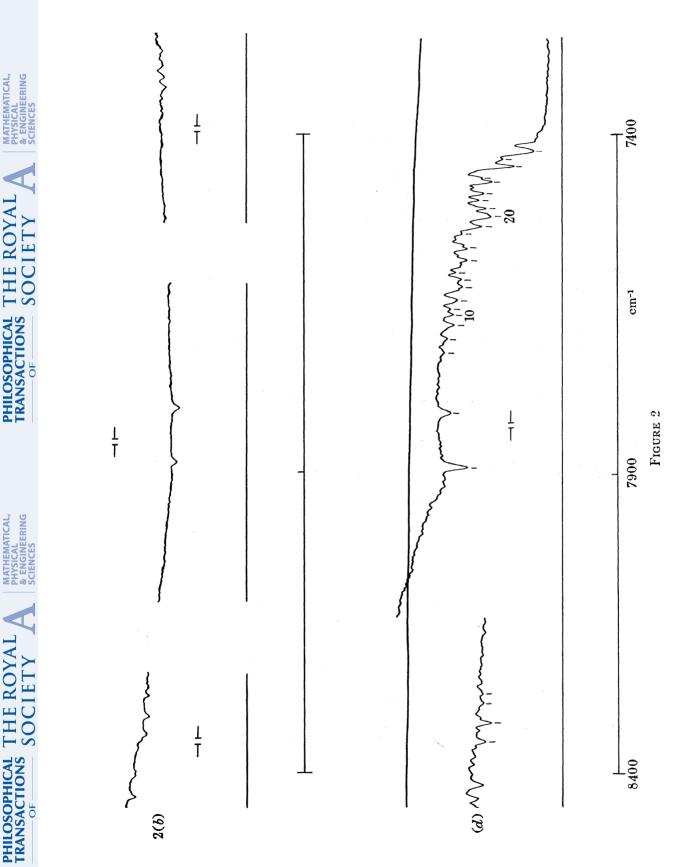
9205.6 9197.1 9171.0 9152.5 9152.5 9124.1 9107.5 9093.4 9073.6 9055.5

9233-6

16

9219-2

9337.1 9319.7 9300.6 9267.9 9247.3

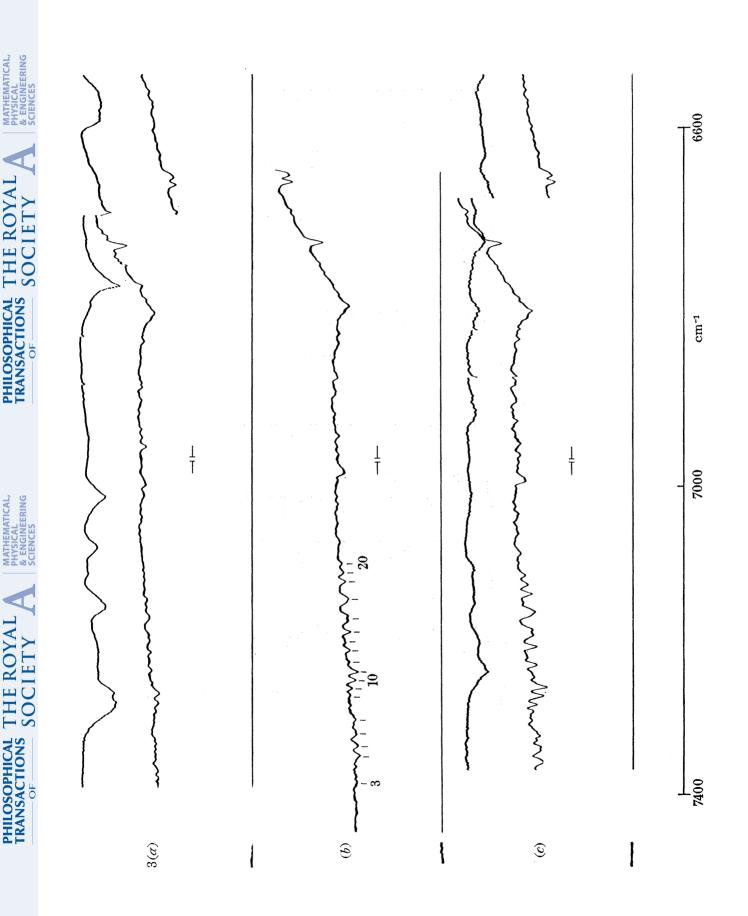

11 15 15 15

9560-4 9444-7 9428-7 9426-5 9377-4

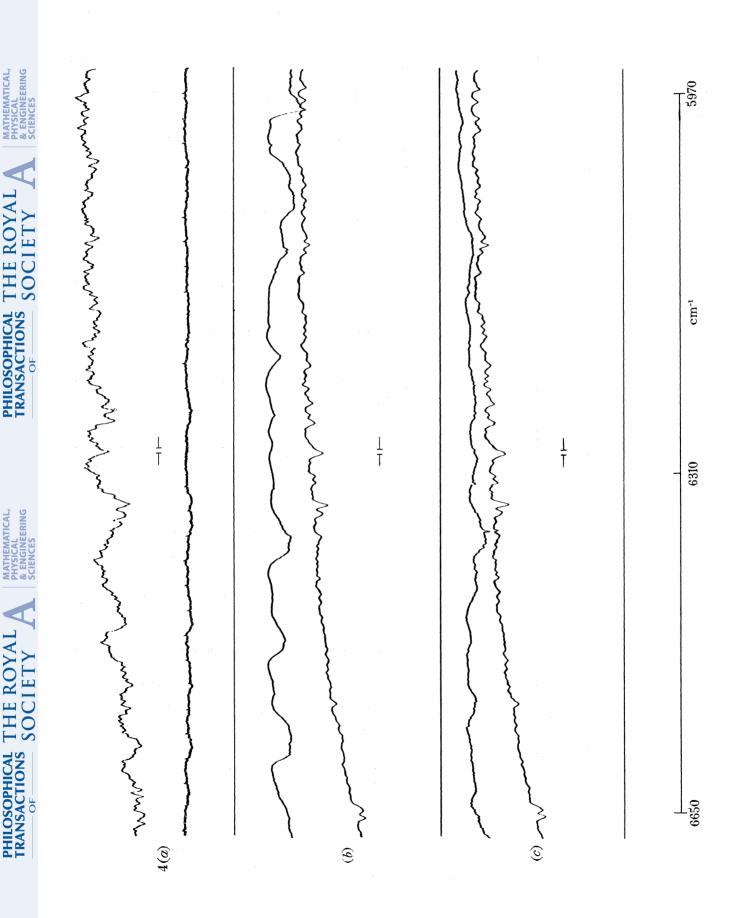
001000

9351.1

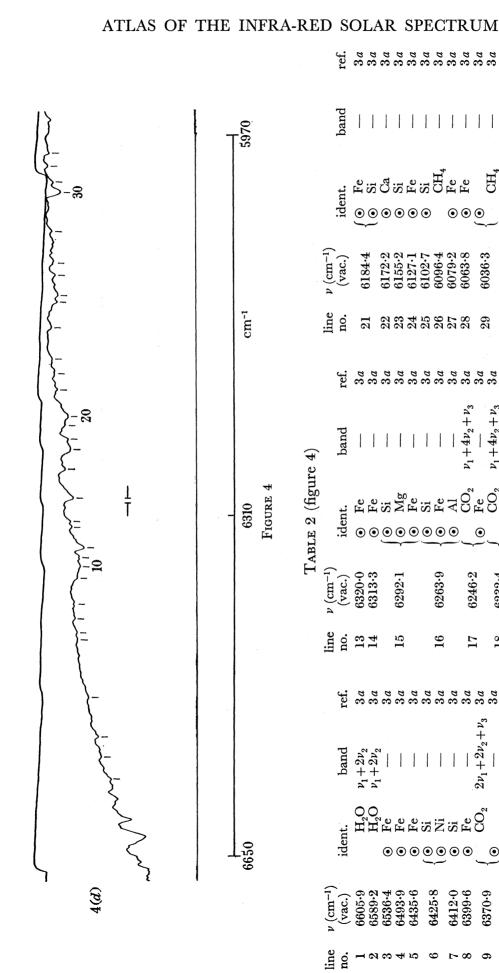
10



- OF

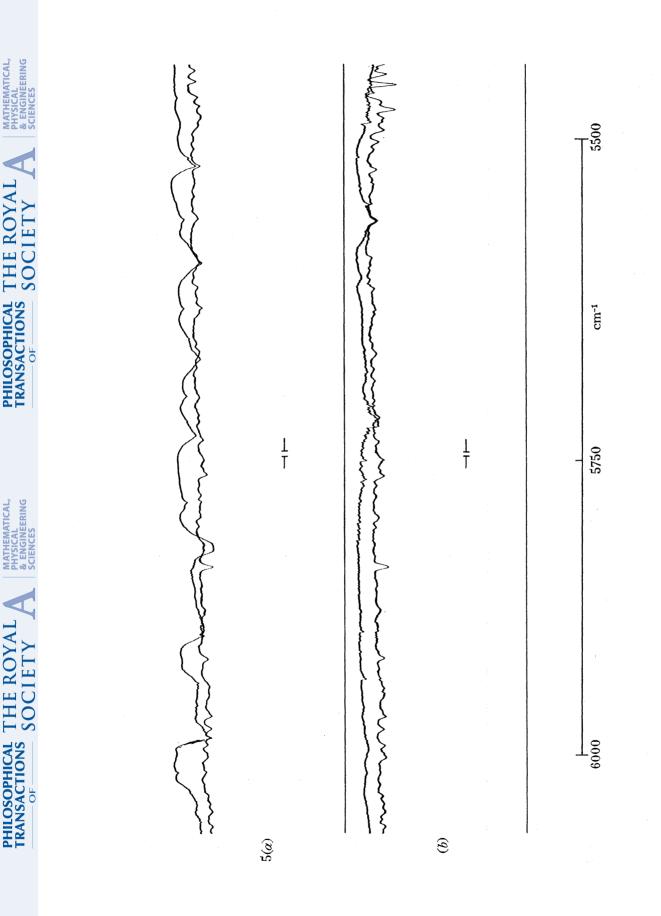

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS CONTENT SOCIETY - 0F

ATLAS OF THE INFRA-RED SOLAR SPECTRUM


ēf. $\nu_1+\nu_3,\,2\nu_3$ $\begin{array}{c} 2\nu_3\\ 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ \nu_1+\nu_3, 2\nu_3\\ 2\nu_1, \nu_1+\nu_3\\ 2\nu_2, \nu_2\\ 2\nu_1, \nu_1+\nu_3\\ 2\nu_2, \nu_3\\ 2\nu_1, \nu_1+\nu_3\\ 2\nu_2, \nu_1+\nu_3\\ 2\nu_1, \nu_1+\nu_2\\ 2\nu_1, \nu_1+\nu_2\\ 2\nu_1, \nu_1+\nu_3\\ 2\nu_1, \nu_1+\nu_2\\ 2\nu_2, \nu_1+\nu_2\\ 2\nu_1, \nu_1+\nu_2\\ 2\nu_2, \nu_1+\nu_2\\ 2\nu_1, \nu_1+\nu_2\\ 2\nu_2, \nu_1+\nu_2\\ 2\nu_1, \nu_1+$ band ident. ٩ $\nu \stackrel{\nu (cm^{-1})}{(vac.)}$ 7593.0 7575.1 7557.2 7557.2 7556.0 7536.0 7536.0 75311.0 7511.0 7495.4 7495.4 7484.9 7486.4 7486.4 7461.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7481.2 7601.9 TABLE 2 (figure 2) line no. 14 ref. band Санана Синина Синина Синина Состо Санана Состо Санана Санана Состо Санана Санана Состо Санана Состо Сос Сос Сос Состо Сос Сос Сос Состо С ident. $\underline{\circ}$ ۲ \odot 0 ۲ $\nu \, (\rm cm^{-1})$ 8255.2 7881.3 7799.3 7704.2 7665.9 7667.0 7653.1 7653.1 7633.8 8341.7 8307.4 8273-4 7612-0 (vac.) line no. -3 က 4 2 2 4 7 6 2 4 111 0 9 8 7 6 7 4 13 111 0 9 8 7 6 7 4

ATLAS O	F THE	INFF	RA-	RE	D	SO]	LA]	R	SPI	ECJ	[R	UM	1			ł	59
			ref.	3a 3a	3 <i>a</i> 9	3 9 6 3 7 6	3a 3a	3a	оа 3а	3a 3a	3a	3a 3a	3a 3a	30 a 30 a 30 a	3 <i>a</i>	3a 3a	3a 3a
			band	$2\nu_2 + \nu_3 \\ 2\nu_5 + \nu_3$	$2\nu_2 + \nu_3$	$2v_2 + v_3$ $2v_2 + v_3$	$2\nu_{2} + \nu_{3}$ $2\nu_{5} + \nu_{3}$		$2\nu_2 + \nu_3 \\ 2\nu_2 + \nu_3$	$\nu_1 + 2\nu_2$	$\nu_1 + 2\nu_2$	$2\nu_2 + \nu_3$	$ \nu_1 + 2\nu_2 $	$\nu_1 + 2\nu_2$	$2\nu_2 + \nu_3$	$v_1 + 2v_2 + 2v_2 + 2v_2$	
MATHEMATICAL, PHYSICAL SCIENCES SCIENCES	6600		ident.	Н <u>,</u> 0 Н,0	H ₂ O	H ² O		(⊙ Mg	H2O	${\rm (O)}_{\rm Fe}^{\rm H_2O}$		€ H ₂ O Fe	$\int H_2 O$			H ² OO	H20 H20
IETY ROYAL A		$\nu (\mathrm{cm}^{-1})$	(vac.)	6775.9 6766.5	6755-0	6736.8	1-92/9	4.0Z/0	6112.1	6685.3	6675-0	6658-3	6653-7	6647.0	$6634 \cdot 5$		6605•9 6589•2
		line	no.	48 49	50	22	53	0 4 л	56 56	57	58	59	09	61	62	63 64 7	65 66
	cm ⁻¹		ref.	3a 3a	3a	3 a 3 a	3a 3a	3 <i>a</i>	3a 3a	3a 3a	3a	3a 3a	3a 3a	3 <i>a</i> 3 <i>a</i>	30 90	3a 3a	3 <i>a</i> 3 <i>a</i>
TRANSACTIONS OF OF		e 3)	band	$\frac{2\nu_2+\nu_3}{2\nu_1}$	$3\nu_3$	$2\nu_{2}^{\nu_{2}} + \nu_{3}^{\nu_{3}}$	$ \nu_1 + \nu_3 $ $ 2\nu_3 + \nu_3 $	$2\nu_{2} + \nu_{3}$	$2\nu_1 + \nu_3$ $2\nu_1$	$2\nu_2 + \nu_3 \\ 2\nu_5 + \nu_3$	$2\nu_2 + \nu_3$	$2\nu_2 + \nu_3 \\ 2\nu_2 + \nu_3$	$2\nu_2 + \nu_3$ $2\nu_2 + \nu_3$	$2v_2 + v_3$ $2v_2 + v_3$ $0v_3 + v_3$	$2\nu_2 + \nu_3$ $2\nu_2 + \nu_3$	$2v_2 + v_3$ $2v_2 + v_3$	$2\nu_2 + \nu_3$
	7000 FIGURE 3	TABLE 2 (figure 3) -1)	ident.	H20 H30	CO2	H ₂ O	Н20 Н,0	H20 H20	H2O	H ₂ O H ₂ O	$H_{2}^{2}O$	н20 Н,0	H ₂ O H	о П Н	H ₂ 0	∫ H ² OO	$(\odot Fe H_2O)$
Sciences and the sciences and the sciences are sciences and the sciences are sciences and the sciences are sc	2	$\nu \ (\mathrm{cm}^{-1})$		7001-9	6.0060	6963-0	6954·8 6946·9	6937-2	6923-4	6917-0 6910-1	6905-0	6871·2	6859.8 6847.7	6843.3 6843.3	6816·3	6804-3 6799-3	6791.7
Science Science		line	no.	26	100	50	31 31	32	34 8	35 36 36	37	80 00 00	40	42	44	45 46	47
			ref.	a_a	3 <i>a</i> 9 -	3a 3a	3a 3a	3a	3a	aa 3a	3a	3a 3a	3a	30 30 7	3a	3a 3a	3a 3a 3a
SOCIETY			band	$2\nu_1, \nu_1 + \nu_3$ $\nu_1 + \nu_3$	$\nu_1 + \nu_3$	$v_1 + v_3$ $v_1 + v_3$	v1+v3 v1+v3	$v_1 + v_3$	$v_1 + v_3 \\ v_1 + v_3$	$v_1 + v_3$ $v_1 + v_3$	$v_1 + v_3$	$v_1 + v_3 \\ v_1 + v_3$	$v_1 + v_3$	$2\nu_1, \nu_1 + \nu_3$ $2\nu_1, \nu_1 + \nu_3$ $9\nu, \nu, \pm \nu$	$v_1 + v_3$	1	$2 u_2 + u_3 \\ 2 u_1 \\ 2 u_2 + u_3$
CTIONS	7400		ident.	H2O H,O	H ₂ O	H ² O	H2O H3O	$\rm H_{10}^{20}$	H2O	H20 H,0	$\mathbf{H}_{2}^{2}\mathbf{O}$	H2O	H ₂ O	H ² O	H20	н СО С	H20 H200 200
		ν (cm ⁻¹)	(vac.)	7419.6 7405.3	7390-4	7327.3	$7311 \cdot 3$ $7293 \cdot 9$	7272-9	7242.9	7232·1 7219·7	7204.1	7194-6 7181-6	7167.3 7138.4	7120-0	7094.4	7054-1	7045-5 7022-5 7015-8
		line	no.	- 01	ຕ ,	₩ ν Ω (9 1-	∞ c	ی 10	11	13	14 15	16	18	88	22 22	2324

	band						1		1		1		NAME OF TAXABLE PARTY.	
	ident.	Fe S:	50 ©⊙	i Si 0 0	⊙ ⊙ Si	CH₄	• Fe	• Fe	•	CH,	Si III III III III III III III III III	• Fe	• Al	
	$ \nu (\mathrm{cm}^{-1}) $ (vac.)	6184.4	6172-2	6155.2	6127-1 6102-7	6096.4	6079.2	6063.8	6036-3	6002.5	5993.2	5979-5	5968-3	
	line no.	21	22	53	25 25	26	27	28	29	30	31	32	33	
	ref.	3a	3a	3a	3a	3a	3a	3a	3a	3 <i>a</i> 3 <i>a</i>	3a	3a 3a	3a	
re 4)	band	1		-			1	$\nu_1 + 4\nu_2 + \nu_3$	-	$\nu_1 + 4\nu_2 + \nu_3$	$\nu_1+4\nu_2+\nu_3$		$\nu_1 + 4\nu_2 + \nu_3$	
TABLE 2 (figure 4)	ident.	• Fe	⊙ Si Si	• Mg	● ● Si	• Ee	• AI	$\int CO_2$	Ee U	• CO2 Fe	$\int_{-\infty}^{\infty} CO_2$	Si Si	$\int co_2$	
TAI	$ \nu \left({ m cm}^{-1} ight) \left({ m vac.} ight) $	6320-0 6919-9	0.0100	$6292 \cdot 1$		6263.9		6946.9		6232-4	6218-7	1 1100	+. 1170	
	line no.	13	14	15		16		71	-	18	19	C C C	02	
		3 <i>a</i> 32												
	band	$v_1 + 2v_2$	$v_1 + zv_2$				1		$2\nu_1 + 2\nu_2 + \nu_3$	$\frac{-1}{2\nu_{1}+2\nu_{2}+\nu_{2}}$	° . 7			$2\nu_1 + 2\nu_2 + \nu_3$
	ident.	H_2O	● Fe	• Fe	⊙⊙ Sie	iz O O	⊙ Si	• Fe	∫ CO₂	CO°	E Fe	• Mg	• Ee	$ CO_2$
	$\nu (\mathrm{cm}^{-1})$	6605-9 650-9	00089-2 6536-4	6493.9	6435.6	6425-8	6412.0	6399-6	6370-9		6358·2	6347.8	6341.0	
					້ດ									


5970

cm⁻¹

FIGURE 4

6310

6650

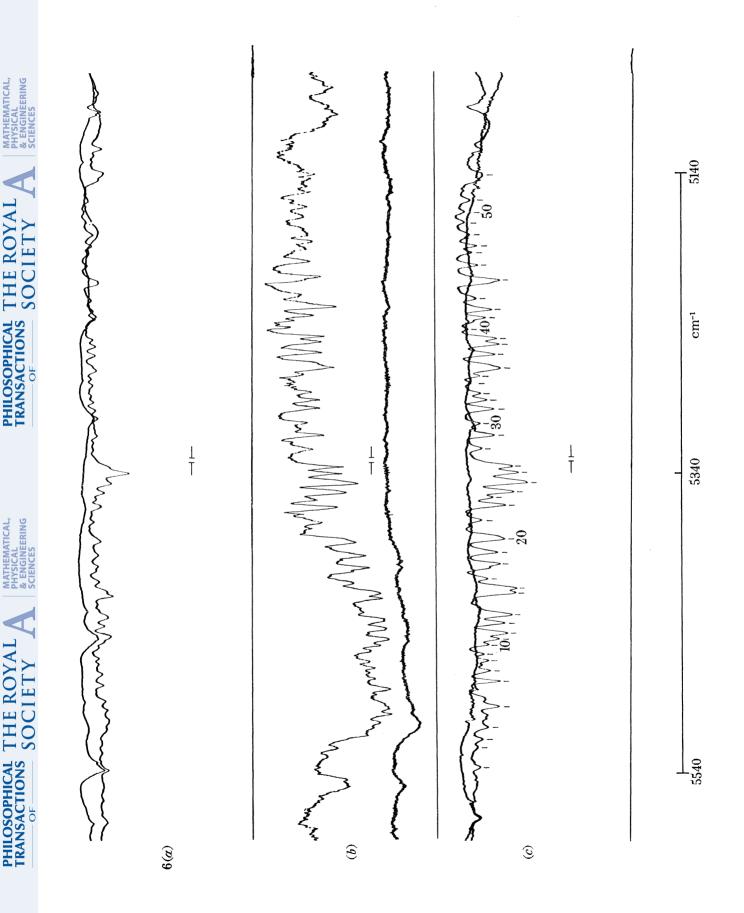
		н на ва
	_	band $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n$
	2200	ы ен 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
40		$ \nu (cm^{-1}) (vac.) (vac.) 5621.6 5662.8 55614.0 55614.0 55579.4 55579.4 55570.1 5551.8 5551.8 5551.1 5551.1 5551.1 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 5551.2 $
		line 10. 33 33 33 33 33 33 33 33 33 33 33 33 33
30	cm-1	
		band band $\nu_2 + \nu_3$ $\nu_2 + \nu_3$ $\nu_3 + \nu_3$ ν_3
	5750 FIGURE 5	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} $
	Ē	
		line 14 15 16 17 19 18 12 22 22 22 22 22 22 22 22 22 22 22 22
-		
	0	band $\nu_2^{\nu_2} + \nu_3^{\nu_2}$ $\nu_2^{\nu_2} + \nu_3^{\nu_3}$ $\nu_2^{\nu_2} + \nu_3^{\nu_3}$
(i)		ident. ident. $(\odot, Si) = CH_4$ $(\odot, Si) = CH$
5(<i>d</i>) ²	1	$ \nu \ (\text{cm}^{-1}) $ $ (\text{vac.}) $ $ (\text{vac.}) $ $ 6002.5 $ $ 5993.2 $ $ 5993.1 $ $ 5915.1 $ $ 5811.7 $ $ 5831.7 $ $ 5831.2 $ $ 5833.2 $ $ 5833.2 $ $ 5833.2 $ $ 5827.1 $ $ 58227.1 $ $ 5809.0 $
		l ان 1 - 2 - 3 1 - 3 - 4 - 4 - 3 1 - 3 - 4 - 5 1 - 5 2 - 5 1 - 5 2 - 5 1 - 5 2 - 5 2 2 - 5 2 2 2 - 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 \triangleleft

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY

9

ATLAS OF THE INFRA-RED SOLAR SPECTRUM

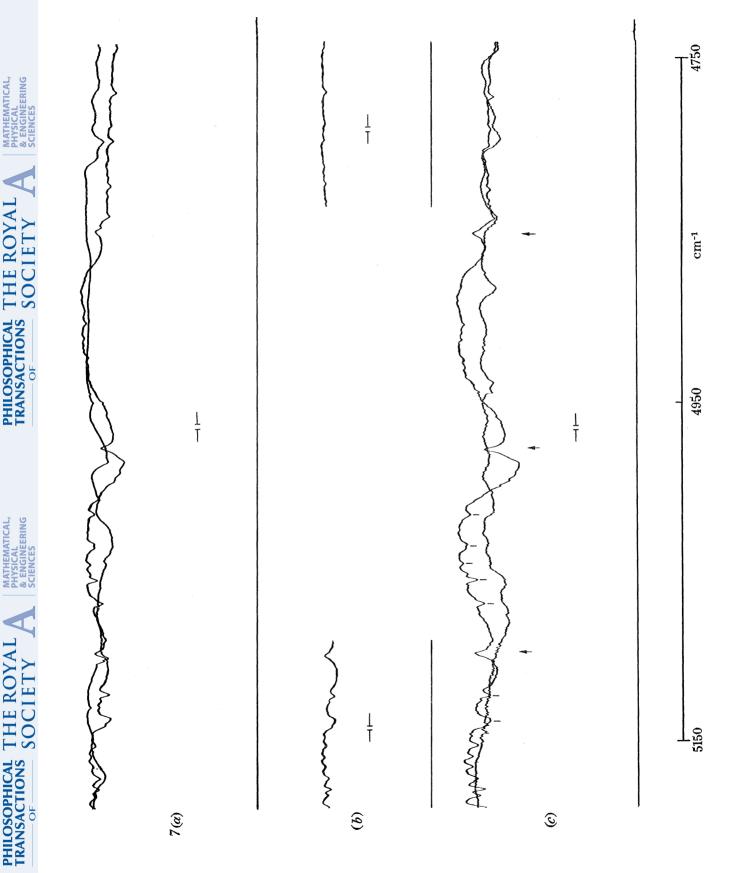
63

Vol. 254. A.

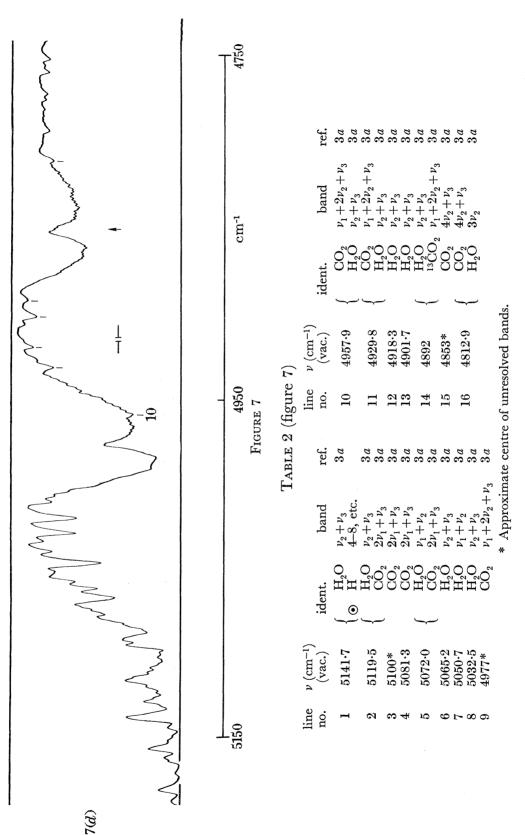
		ref. 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		band $p_2 + p_3$ $p_2 + p_3$ $p_3 + p_3$ $p_4 + p_4$ $p_5 + p_3$ $p_5 + p_4$ $p_5 + p_5$ $p_5 + p_5$
	5140	ident.)))))))))))))))))))
		ν (cm ⁻¹) (vac.) 5265.9 5256.6 5226.1 5226.1 5226.1 5229.9 5220.3 5220.3 5220.3 5220.3 5220.3 5129.0 5189.0 5189.0 5181.9 5157.1 5157.2 517.2 51
ζ		line 337 510 52 53 53 53 54 54 54 54 55 55 55 55 55 55 55 55 55
	cm ⁻¹	$\begin{smallmatrix} \mathrm{ref}_{a} \\ \mathrm{sec} \\ se$
		e 6) band $p_{2}^{2} + p_{3}^{2}$ $p_{2}^{2} + p_{3}^{2}$ $p_{3}^{2} + p_{3}^{2} + p_{3}^{2}$ $p_{3}^{2} + p_{3}^{2} + p_{$
	1 5340 Figure 6	TABLE 2 (figure 6) TABLE 2 (figure 6) 1 ident. 1
		$\begin{array}{c} {\rm TA}_{\rm A} \\ \nu ({\rm cm}^{-1}) \\ \nu ({\rm vac}.) \\ 53860 \\ 53860 \\ 53860 \\ 53860 \\ 53364 \\ 53364 \\ 53394 \\ 53394 \\ 53394 \\ 53394 \\ 53394 \\ 53394 \\ 53394 \\ 53394 \\ 53294 \\ 53294 \\ 53292 \\ 532$
		line 10. 22 22 23 23 23 24 20 25 23 20 26 25 22 20 20 20 20 20 20 20 20 20 20 20 20
		ref.
		band $\nu_2^{\nu_2} + \nu_3^{\nu_2}$ $\nu_2^{\nu_2} + \nu_3^{\nu_2}$ $\nu_2^{\nu_2} + \nu_3^{\nu_3}$ $\nu_2^{\nu_2} + \nu_3^{\nu_3}$
	5540	існи прососососососососососососососососососос
و (<i>đ</i>) بر		ν (cm ⁻¹) (vac.) 5536·1 5521·1 5521·1 5516·0 55495·8 54495·8 5449·5 5448·0 5548·1 5480·1 5480·1 5548·1 5480·1 5548·1 5480·1 5480·1 5480·1 5480·1 55480·1 5480·1 5480·1 5480·1 5480·1 5480·1 5480·1 5540·0 5480·1 5540·1 5560·1 5560·1 5560·1 5560·1 5560·1 5560·1 5560·1
		nn n 10 10 11 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

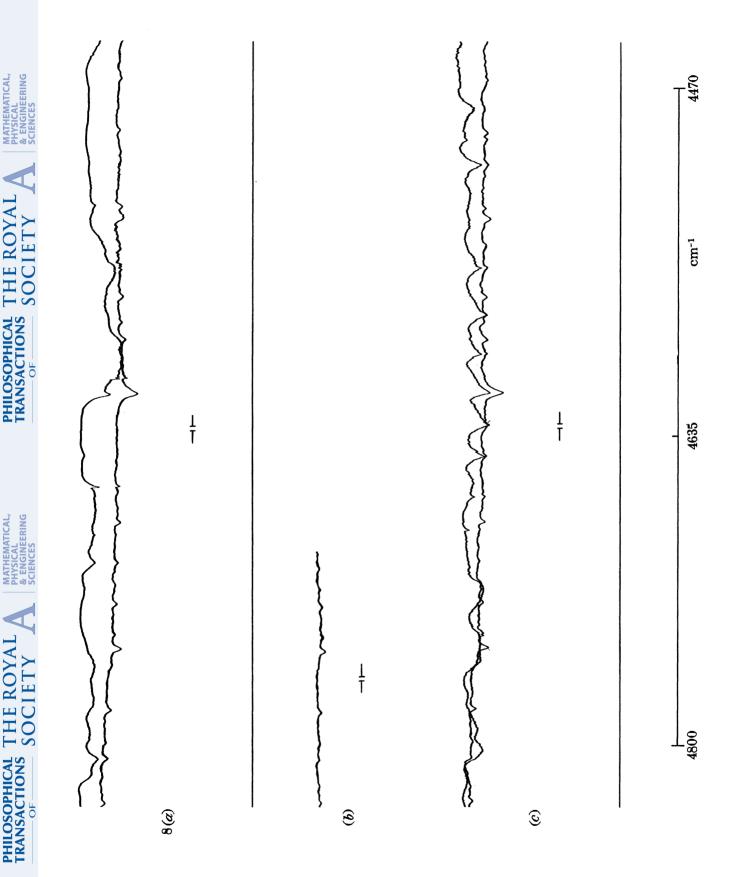

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

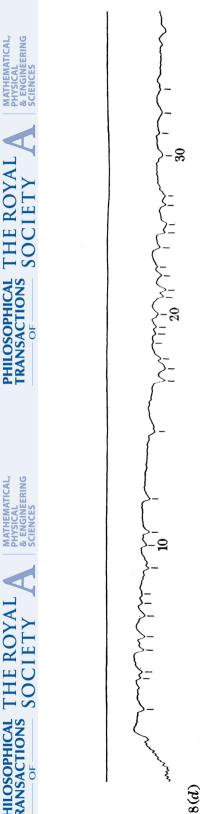
TRANSACTIONS SOCIETY


ATLAS OF THE INFRA-RED SOLAR SPECTRUM

65

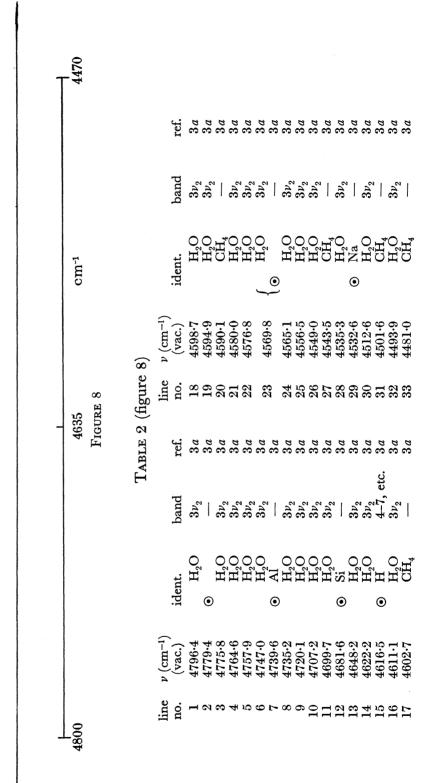
ATLAS OF THE INFRA-RED SOLAR SPECTRUM

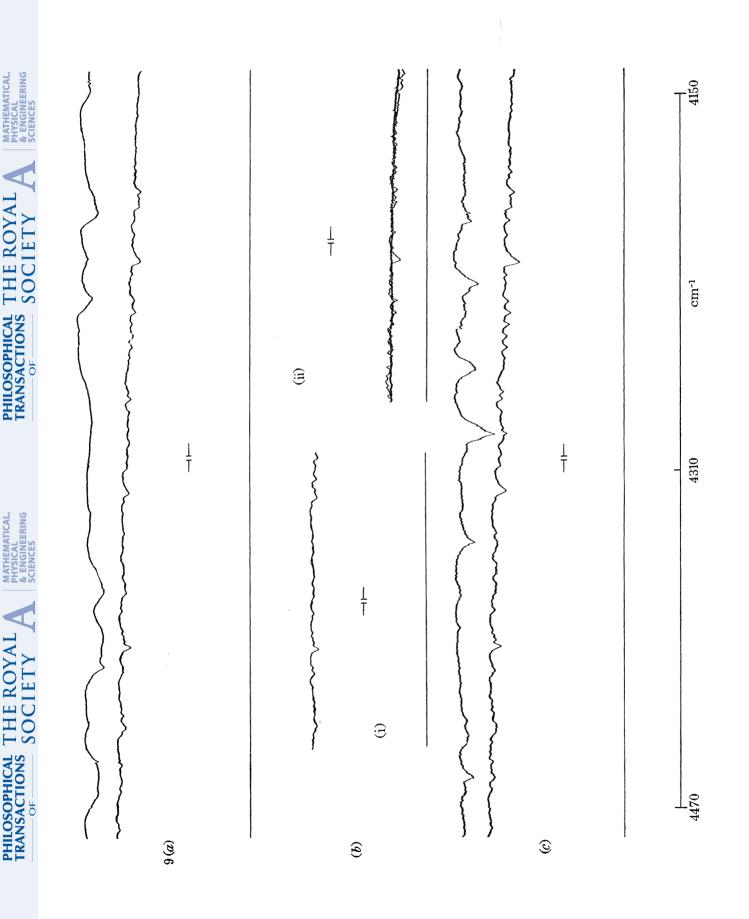

Mathematical, Physical & engineering Sciences TRANSACTIONS COLLETA ETY SOCI - 0F


Mathematical, Physical & Engineering Sciences

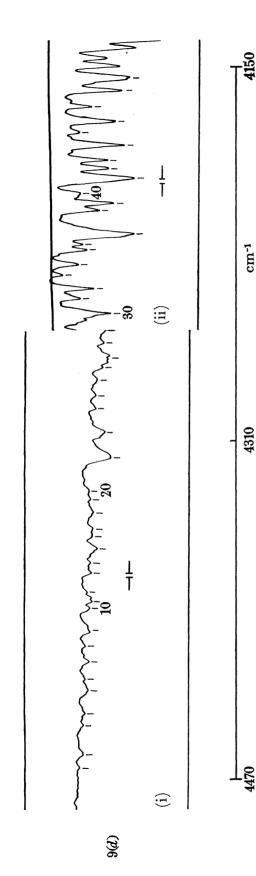
TRANSACTIONS COLLECTION

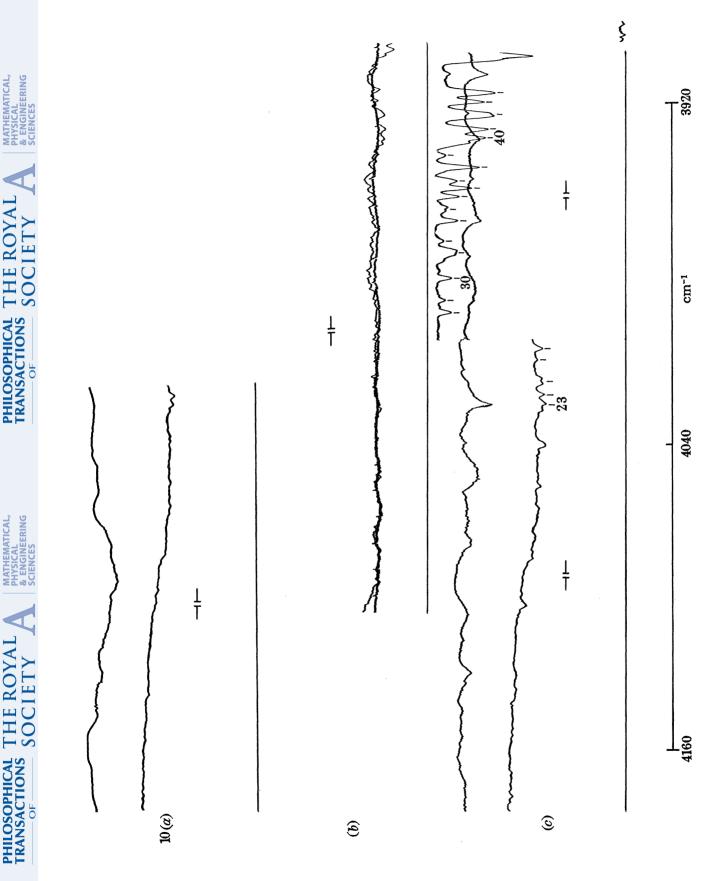
SOCIETY


- OF

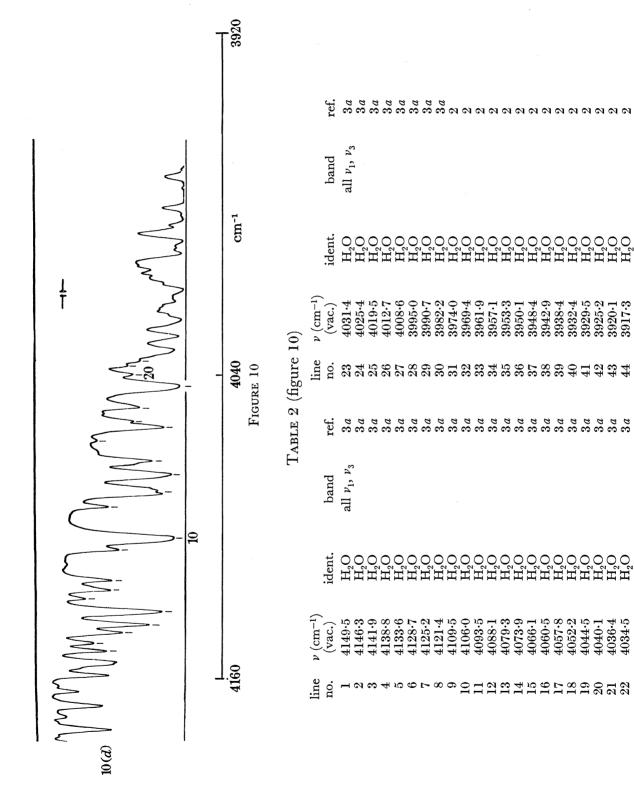


1 T

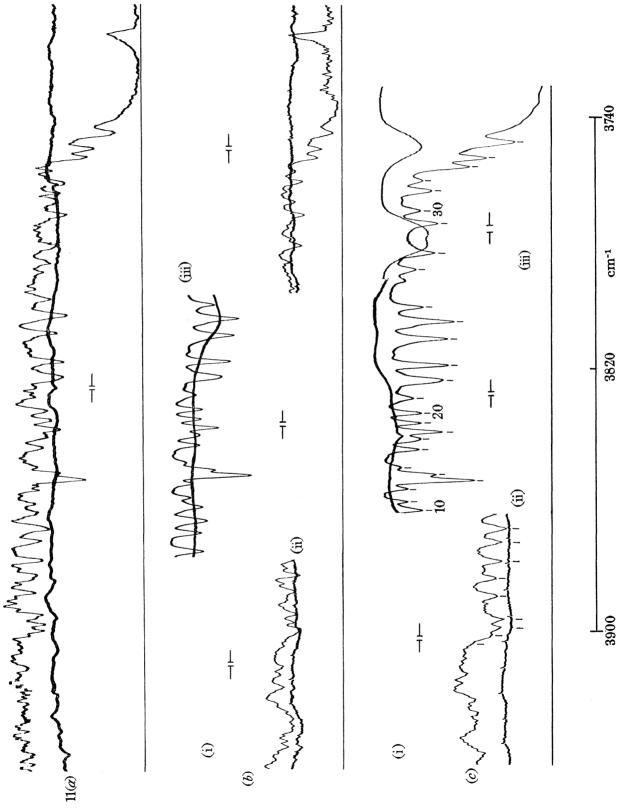




			-																		
			band	P3	٣,	ۍ م	י	\mathcal{V}_{2}	ۍ م	ب بع	, <i>v</i>	ν. γ,	بر بر	ν. •	ب بع	٣,	٣,	, بر ور	<i>ب</i> ر .	, ^{بر}	5
			ident.	Н,О	H,O	H,O	ſ CŤI₄	Ó,H	H,O	H,O	H ₀ H	H,O	H ₀	H _. O	H ₀ ,H	H,O	H,O	H ₀ H	H,O	H ₀ ,H	1
		$\nu \; ({\rm cm}^{-1})$	(vac.)	$4230 \cdot 1$	4224.3	4221.2	0.0101	0.0177	4208.0	4204.8	4200.2	4194.5	$4191 \cdot 1$	4187.3	4181.5	4176.4	4171-3	4165.9	4159.2	4154.6	
		line	no.	34	35	36	L0	10	38	39	40	41	42	43	44	45	46	47	48	49	
			ref.	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a
	; 9)		band	1		1		$ \nu_3 $	ν_3	ν_3	1			ν_3	ν_3	ν_3		ν_3		ν_3	
FIGURE 9	TABLE 2 (figure 9)		ident.	\int H ₂ O	(CH₄	CH ⁴	CH ⁴	0,H	$H_2^{-}O$	H_2O			∫⊙ Na		H_2O	$H_{2}^{-}O$	CH_4	$\rm H_2O$	CH_4	H_2O	CH_4
	T_{AB}	$\nu \; (\mathrm{cm}^{-1})$	(vac.)	1212.0	B.0707	4333.7	4315.6	4306.7	4294.5	4288.8	7.1864	LIOTE	1976.1		4269.8	4264.3	4261.1	4250.8	4244.8	4239.9	4234-4
		line	no.	10	гa	20	21	22	23	24	95	3	96	04	27	28	29	30	31	32	33
			ref.	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a
			band					1			1	ν_3]			ν_3
			ident.	CH_4	CH ¹	CH ¹	CH ¹	CH₁	CH ¹	CH_{4}	CH_{4}	H_2O	CH_4	CH ⁴	CH_{4}	CH4	CH_{4}	CH_{4}	CH4	CH_{4}	$\rm H_2O$
		$\nu \ (\mathrm{cm}^{-1})$	(vac.)	4466.9	4463.7	4456.3	4449.9	4435.8	4430.8	4421.4	4415.5	4407.8	4400.5	4394.3	4391.3	4384·3	4380.6	4375.6	4367.0	4362.0	4356·I
		line	no.		2	က	4	ñ	9	7	x	6	10	11	12	13	14	15	16	17	18

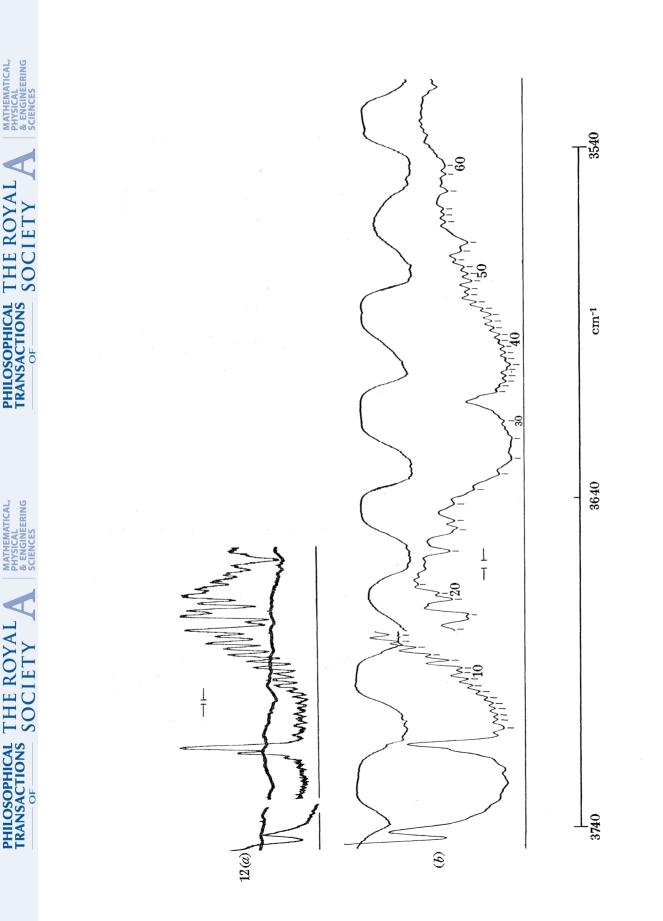

ATLAS OF THE INFRA-RED SOLAR SPECTRUM

71



MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

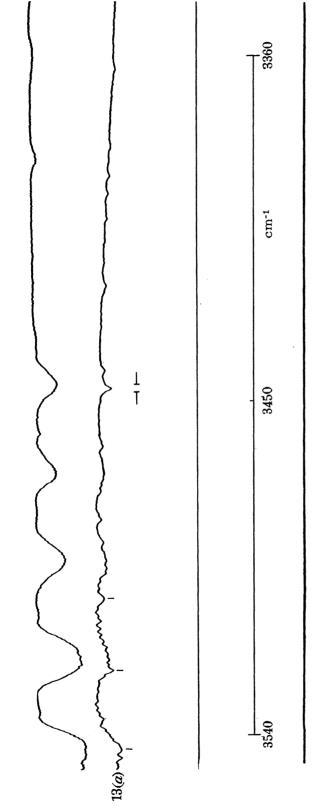

Residual water vapour in spectrometer at 45000 ft.

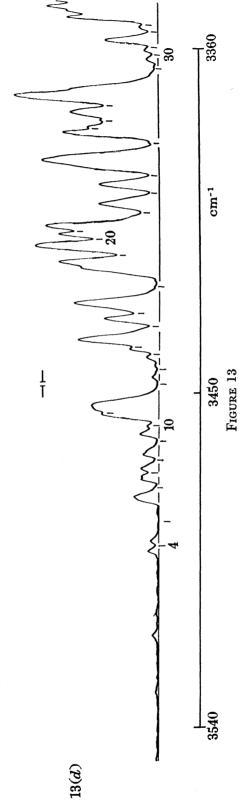
man man

11(*d*)

⊥ T

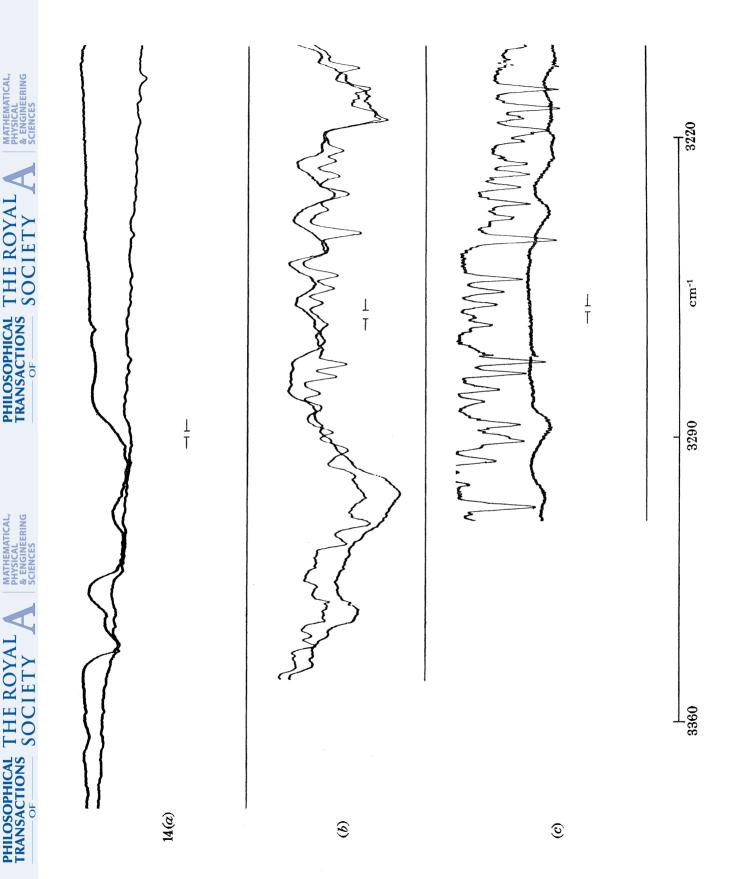
40			ref.	¢	10	1 01	61	ଧ	61		5	67	01	61	61	01	5	01	5	21	67
3740			band	2	رس بر	د . 3	<i>ب</i> ر .	<i>ب</i> ر. 23	ν_3	4-6, etc.	ν_3	ν_3	ν_1, ν_3	ν_3	ν_1, ν_3	ν_3	ν_1, ν_3	ν_3	ν_1, ν_3	ν_1, ν_3	ν_3
cm ⁻¹			ident.	Он	H ₀	H,0	H,O	H,O	$\int H_2^{-}O$	H O	H_2O	H_2O	$H_2^{-}O$	H_2O	$\rm H_2O$	H_2O	$H_{2}^{-}O$	H ₀	H _. O	$H_{2}O$	$H_2^{-}O$
		[1]	$\nu (\mathrm{cm}^{-1})$	2825.0	3831.7	3826.7	3821.7	3816.0	3806.7	-0000	3801.2	3796.1	3784-4	3779.4	3769-7	$3765 \cdot 6$	3759-8	3756 - 6	$3752 \cdot 1$	3749.3	37 44 ·0
3820	FIGURE 11	(figure	line no.	10	06 06	21	22	73	76	H I	25	26	27	28	29	30	31	32	33	34	35
	Figu	TABLE 2 (figure	ref.	6	1 C.	101	67	61	67	61	61	67	01	61	61	01	01	01	67	c)	63
		I	hand	-	2 ² 3	V3. V3	V. 5	v_{1}, v_{3}	ν_3	ν_3	ν_1, ν_3	¥.3	<i>ب</i> ر 2	ν_3	ν_3	ν_3	<u>ب</u> ر	ν_1, ν_3	۳.	ج چ	ν_3
			ident.	Он	H_O	H,O	H,O	H,O	H_2O	$H_{2}^{-}O$	$H_{2}^{-}O$	$H_{\overline{0}}$	$H_{2}^{-}O$	H_2O	$H_{2}O$	H_O	H ₀	H ₀	H,O	H,O	$H_{2}^{-}O$
3900			$\nu (\mathrm{cm}^{-1})$	2006.9	3904-9	3901-9	3899.4	3891.3	3886.0	3880.3	3874.5	3870.0	$3865 \cdot 2$	3861.9	3857-4	3854.3	3852.3	3849.9	3843.9	3841.2	3838-0
			line.	-	- 6	100	4	ŝ	9	2	æ	6	10	11	12	13	14	15	16	17	18


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY

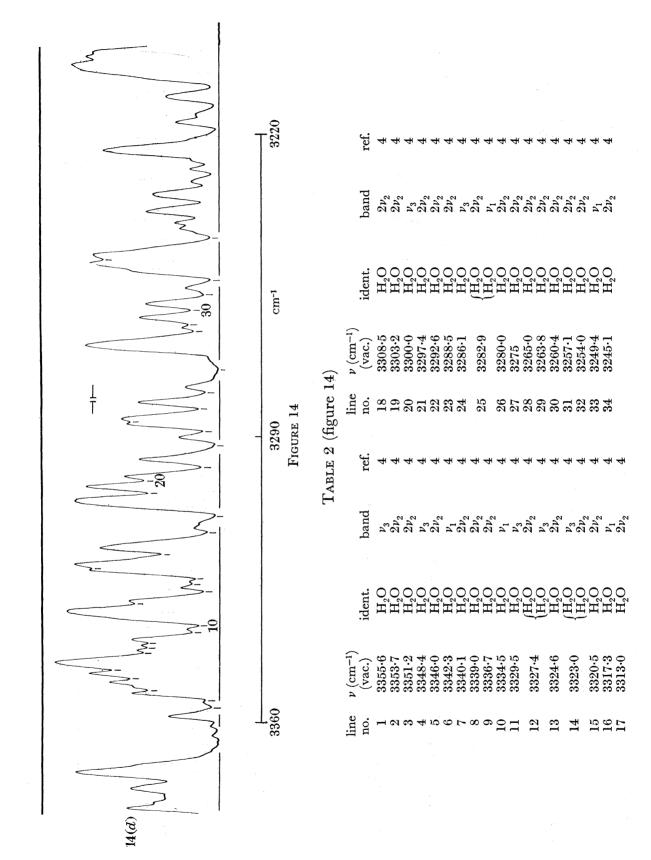


AT	TLAS	OJ	F TI	HE	INI	FRA	-RF	ED	SC	DL	AR	S	PE	CT	RU	M					77	
					ref.	01 01	ରା ରା	010	20 12	2	20	2	2) (2)	c) c	101	2 2	2	ର ର	c) c	101	01 C	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						P26 P28	P30	P32	P34 P36	P38	P40	P42	P44 $P46$	DAQ	0# 1	P50						
ł					band	+ + v3	r + 3 	$+\nu_{3}$	$2\nu_2 + \nu_3$ $2\nu_5 + \nu_5$	- +	$+\nu_3$	$+\nu_3$	ہ ہے 1 + 4	° :	₽3 ₽3	v, + v,	$+ \nu_3$	v3 + v3	$v_1^{\nu_1}$	- 	2	ب م
1						$2\nu_2$	$2v_{2}^{V}$	5°2 10	8 7 7 7 7	50	2,2	$5^{-5}$	8 7 2 2 2	0.3° 2	V1'	2 ^v 2	$2v_2$	$2^{\nu}_{\nu}$	, ¹ 6	~ ¹	$\nu_3$	<b>1</b>
		3540			ident.	ဝိုင်	$\left\{ \begin{matrix} \mathrm{CO}_{2}^{2} \\ \mathrm{H}_{2}^{2} \mathrm{O}_{2} \end{matrix}  ight\}$	CO2	o o o co	$CO_2^2$	CO ² H.O ²	CO2	ççç ççç	$\{ \mathbf{H}_{\mathbf{O}}^{\mathbf{O}} \}$	H ₂ O ²	(CO ₂ )	$\{ CO_2 \}$	(H20) (C0)	H ² Ó	$H_2^{02}$	H ₀	++2~
					$     \nu  (\mathrm{cm}^{-1}) $ (vac.)	3590-6 3588-7	3586.9	3585.2	3583·3 3581·3	3579.4	3577-4	3575.1	3572.8 3570.5	3568-0	3566-0	0 0020	3002.3	3560.1	3557.1	3552·3	3547.2 3545.2	1 0100
					line no.	$\frac{42}{43}$	44	45	46 47	48	49	50	51 52	53	54	ւ	66	56	57	58	59 60	3
		cm ⁻¹			ref.	20	ର ର															
		Ŭ			pq				$^{-}_{R30}$		3 R20	3 R10	R6			$^{3}_{P10}$			3 P16			•
			12	gure 12)	band	بر بر م	د ۳, ۳3 ۳,	C	$2\nu_{2} + \nu_{3}$ $2\nu_{6} + \nu_{6}$	$\nu_3$	$2\nu_2 + \nu_3$ $\nu_5$	$2\nu_2 + \nu$	$v_3^{\nu_3}$	$\nu_1, \nu_3$	$2v_2 + v_3 + v_3$	$2\nu_2 + \nu$ $2\nu_3 + \nu$	$2\nu_2^2 + \nu$	$2\nu_2 + \nu_1$	$2\nu_2 + \nu_3$ $2\nu_2 + \nu_3$	$2\nu_2 + \nu$	$2\nu_2 + \nu$ $2\nu_2 + \nu$	122 -
	-	3640	FIGURE 12	TABLE 2 (figure 12)	ident.	H20 H30	H ₂ O H ₃ O	$\{ \overset{H_2}{\operatorname{H}_2^2} O \}$		$(H_2 \vec{O})$	CO ₂ H,O		(H ² O)	$\{H_2^{O}$	000000000000000000000000000000000000000	S O	CO2	(CU ₂ (H,O			o°c Coc	< (2 (2
		(1)		$T_{Al}$	$\nu  (\mathrm{cm}^{-1}) $ (vac.)	$3656 \cdot 5$ $3649 \cdot 2$	3647.0 3642.0	3638-0		3634-0	3628-3	$3621 \cdot 2$		3015-U 3600.6	3608·1	3606.5 3604.9	3603.1	3601.4	3599-7 3598-2	3596.2	3594.5 $3592.7$	-
					line no.	$22 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\$	$24 \\ 25$	26	Ċ	12	28	29	0	30 31	32	33 34 34	35	36	37 38	39 39	40 41	1
					ref.	ର ର	ରା ଚା	01 (	20	0	ରା ରା	010	2 2	010	2010	20	c1 (	20	01 O	101	S) S	। <b>२</b> १
					band	$\begin{array}{c}\nu_1+\nu_3  P4\\\nu_1\end{array}$			$v_1 + v_3 P10$ $v_1 + v_5 P12$					$v_1 + v_3 P24$				$     v_1 + v_3  F34 \\     v_1 + v_3  P36 $		$\nu_1 + \nu_3$	$\nu_3$	<u>د</u> ا
		0			ident.	$\{ \substack{\text{CO}_2\\\text{H},\text{O}_2}$		(H ₂ Ó	ဝိုင်	$\operatorname{CO}_2^{\scriptscriptstyle 2}$	(CO ₂ (H,O	Ç02	ဝိုင်			(U0, (H,0	CÕ2	çç CC	CO ² (H ² O	$\{\overline{CO_2}^{2}\}$	H2O H2O	) 7
<b>Weinigen and Annual Sector</b>	- <b></b>	3740			$     \nu  (\mathrm{cm}^{-1}) $ (vac.)	3711.4		1.2015	3704-7 3704-7	$3703 \cdot 0$	3701.5	3699.5	3696-0 3696-0	3694•1 3692•3	3690-7	3688.3	3686.5	3684•5 3682•6	3680-5	3675.0	3670-9 3668-8	3661·2
					line no.	Ι	G	N 6	ю 4	ю,	9	<b>L</b> 0	xo	10	12	13	14	15 16	17	18	19	21









MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES	
THE ROYAL A SOCIETY	
PHILOSOPHICAL TRANSACTIONS	

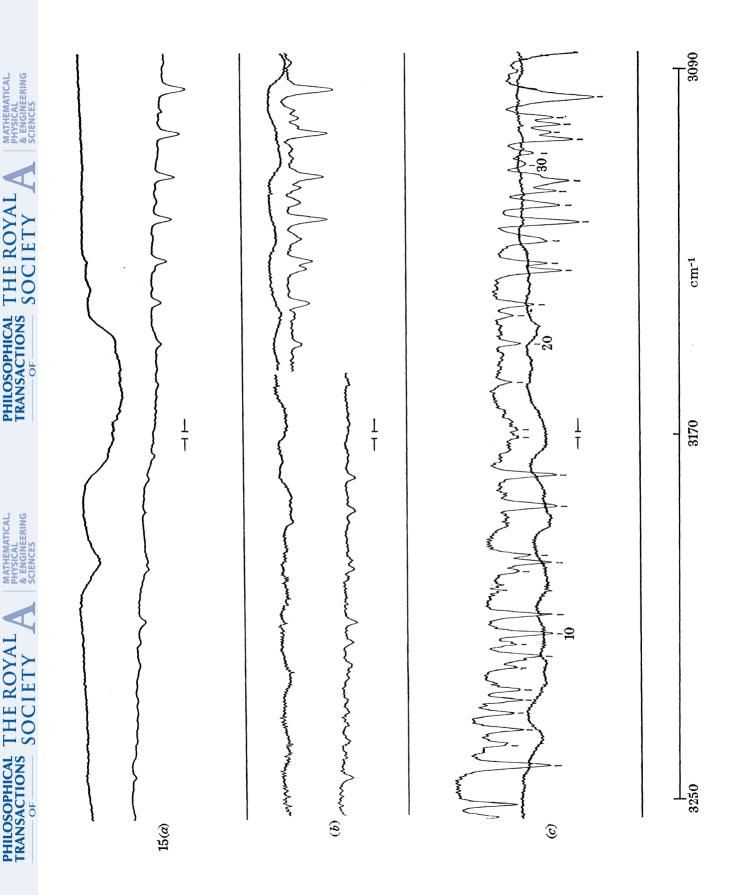
	band	ν ₃ ν1	733 A	⁷ 2	$2\nu_2, \nu_1$	$\nu_{1}, 2\nu_{2}$	$2\nu_{,}$	<i>ب</i> اً۔	$2\nu_{s}$	ν, -	$2\nu_{s}$	<i>ν</i> , ²	ν.,	$\nu_3$	2v,	1
TABLE 2 (figure 13)	ident.	$_{ m H_{0}^{2}O}^{ m H_{2}O}$	H ₂ O H	$H_2^{20}$	H2O H3O	$H_{0}^{2}O$	$H_{0}$	$H_{0}$	$H_{0}$	$H_{0}$	H,O	H,O	H,O	H,O	H,O	a
	$\nu (\mathrm{cm}^{-1})$ (vac.)	3427.9 3420.4	3413.0 3408.8	3406.7	3403.6 3397.2	3392.7	$3385 \cdot 6$	3380-4	3377-5	3374.7	3365-7	$3361 \cdot 6$	3359-5	3355.6	3353-7	
	line no.	17 18	19	21	33 K	24	25	26	27	28	29	30	31	32	33	
	ref.	07 4	44	4	44	4	4	4	4	4	4	4	4	4	4	4
	band	$v_1, v_3 2v_3 + v_3$	$v_{3}^{\nu_{3}}$	$\nu_1$	ע ₁ ע ₃ , ע	$\nu_1, \nu_3$	$\nu_{3}, \nu_{1}$	$\nu_1$	$2\nu_2, \nu_3$	$\nu_3^{-2}$	<i>ل</i> ري 2	ν,	μ ¹	$2^{\nu_2, \nu_3}$		ν, Γ
	ident.	(H ₂ O) (13ČO,	$\left( \begin{array}{c} H_{2}O \\ 13CO_{n} \end{array} \right)$	$H_2O^2$	H2O H,O	${ m H}_2^{ m i}{ m O}$	$H_2O$	$H_{2}O$	$H_2O$	$H_{2}O$	$H_{0}$	$H_{2}^{-}O$	$H_{\overline{0}}$	$H_{2}^{-}O$	$H_{\overline{0}}$	$H_2\overline{O}$
	$\nu (\mathrm{cm}^{-1})$ (vac.)	3545-2	3528-0	3503-0	3496.7 3488.2	3474.8	3470.5	3467.2	3461.4	3455-7	3453.2	3446.6	3442.3	3440.1	$3438 \cdot 1$	3430.9
	line no.	I	5		4 v	9	2	x	6	10	11	12	13	14	15	16

<del>च</del> च

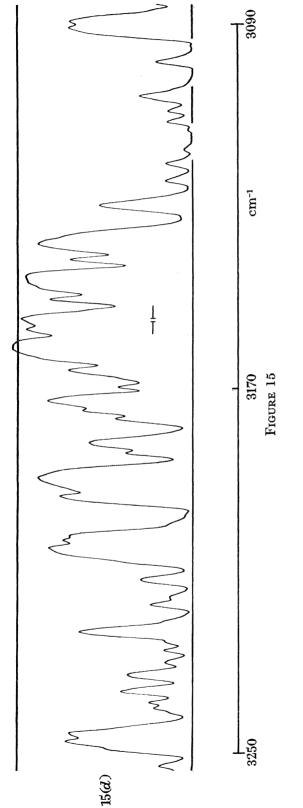


## ATLAS OF THE INFRA-RED SOLAR SPECTRUM

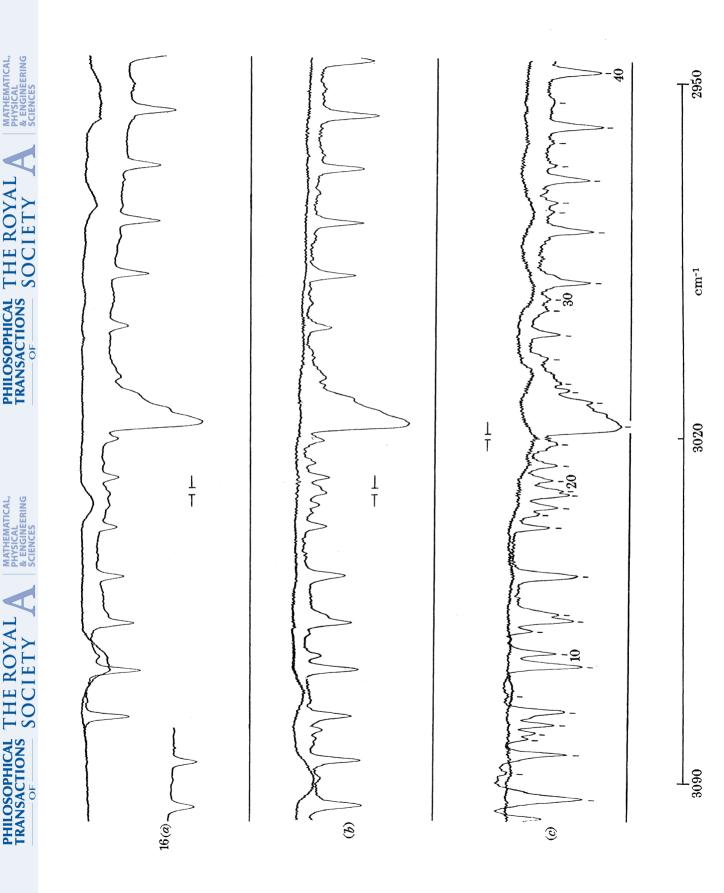



II-2

TRANSACTIONS COLLETA


SOCIETY

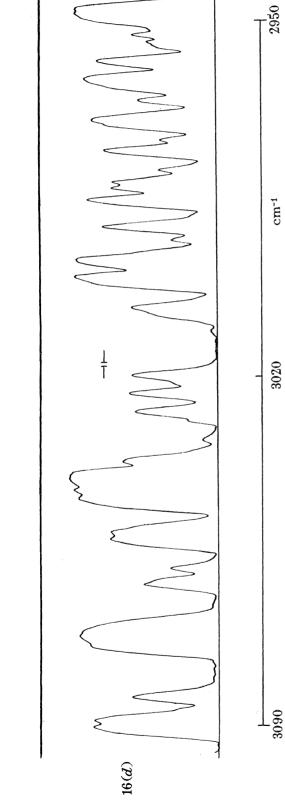
- OF -


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES







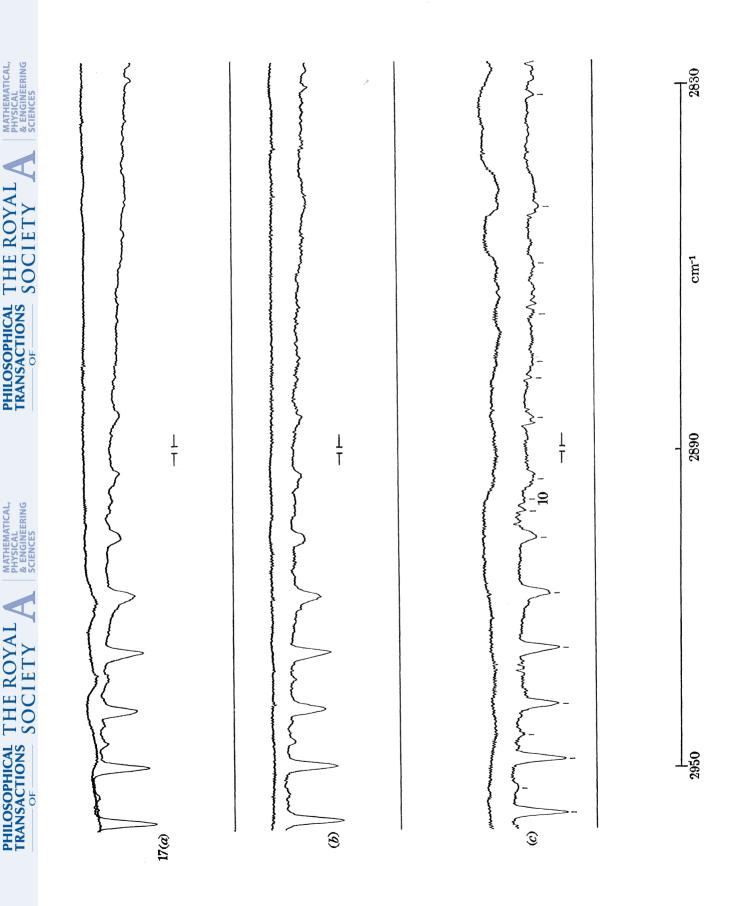

	ref.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	band	v. R12	$2^{j}_{\nu}$ ,	$\nu_3^{-} R11$	$2\nu_2$	.	$\nu_3  R10$	$2\nu_{s}$	$2\nu_2$	.	$2 u_{2}$	$\nu_3 R9$	$2\tilde{\nu}_2$	$2\nu_2$	$2\nu_2$	$\nu_3$ R8	$2\nu_{s}$	$2\nu_2$	$2\nu_2$		$\nu_3 R7$	$2 u_2$
	ident.	CH,	$\mathrm{H}_{0}$	CĤ₄	$/\mathrm{H_2\dot{O}}$	(CH₄	CH4	(H,O	(H ₂ O	(CH₄	Ó,H	∫CH₄	$(H_{a}O$	$H_2^{-}O$	$H_{2}^{-}O$	$CH_4$	Ó,H	$H_{O}$	$(H_{2}^{-}O)$	(CH₄	∫CH4	$(H_2O$
	$\nu (\mathrm{cm}^{-1})$ (vac.)																				2005.9	1 0000
ure 15)	line no.	22	23	24	96	0.4	96	04	10	17	28	00	63	30	31	32	33	34	26	00	36	2
TABLE 2 (figu	ref.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	pc																			R14	R13	
	baı	$2\nu_{c}$	$2\nu_{s}$	$2\nu_{s}$	$2\nu_2^{-}$	$2\nu_2$	$2\nu_2$	2٧,	$2\nu_{s}$	2, 2	$2\nu_{s}$	$2\nu_{s}$	$2\nu_2$	$2\nu_2$	$2\nu_2$	$2\nu_{s}$	2٧,	$2\nu_{s}$	$2\nu_{2}$	$\nu_3$	<i>ب</i> ع	$2\nu_2$
	ident.	H°O	H,O	H,Ô	$H_{0}$	$H_{O}$	$H_{0}$	H,O	H,O	H,O	H,O	H,O	H,O	$H_{0}$	$H_{0}$	H _. O	H,O	H,O	H,O	$\mathrm{CH}_4$	CH ⁴	${ m H_2O}$
	$\nu (\mathrm{cm}^{-1})$ (vac.)	3245.1	3240.0	3236.6	3232.9	3230.0	3227.5	$3222 \cdot 0$	3219.3	3216.5	3214-1	3209.8	3199.8	3197.9	3196.2	$3185 \cdot 2$	3178.2	3169.7	3167.9	3157.5	3148.9	3142.8
	line no.	_	01	ෆ	4	5	9	2	×	6	10	11	12	13	14	15	16	17	18	19	20	21



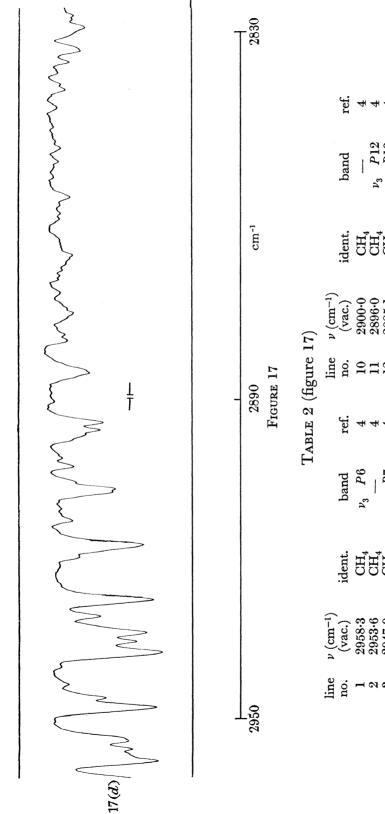
MATHEMATICAL PHYSICAL & ENGINEERING SCIENCES	
<b>V</b> _V	
THE ROY SOCIET	
PHILOSOPHICAL           TRANSACTIONS           OF	



PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & BENGINEERING




		re	<b>N</b> ¹ <b>N</b> ¹	71.	יעי עי	עי עי י	1. 1.	<b>U</b> , <b>U</b> ,		<b>U</b> , <b>U</b> ,	4	V' V'	
		band	$2 u_2$	$2\nu_2^{}$ no	V3 P3	$\stackrel{\nu_3}{_{2\nu_3}}P4$	$2\nu_2^-$	$2\nu_2$	$\tilde{\nu_3}$ P5	$2\nu_2$	${2 u_2\over u_3}P6$	v3 P7	5
		ident.	$\left\{ {{\rm H}_{\rm A}^{\rm O}} \right\}$	H ₂ Ô	$H_{0}^{CH_{4}}$	(CH₄ {H₀O	$\left\{ {{\rm H}_{2}^{\rm i}{\rm O}}  ight\}$	(H₂Ô {CH,	CH ⁴	$\left\{ {{\rm CH}_{4}^{00} { m CH}_{4}^{00} } \right\}$	H2Ó CH,	$\operatorname{CH}_{4}^{1}$	M
		$     \nu  (\mathrm{cm}^{-1}) $ (vac.)	2994.4	2991.9	2988.8	2978-9	2975-2	2973-3	2968.6	2966-0	2961.5 2958.3	2953.6 2947.9	
		line no.	29	30	31	32	33	34	35	36	37 38	$\frac{39}{40}$	
		ref.	44	4,	44	44	44	44	4	44	44	44	4
16	ure 16)	band	$\nu_3 R 1 2 \nu_6$		$2v_2$ $2v_3$	$2\nu_2^{}$ $\nu_3^{}$ $R0$	$2\dot{\nu}_2$	$2\nu_2$	$ u_3  Q0$	$2^{\nu_{3}}_{\nu_{3}}$	$\begin{array}{c} 2 \nu_2^{ ilde{r}} \  u_{ m s} & 0 \end{array}$	$\sum_{v_3}^{v_3} \tilde{P1}$	$\nu_3$ ² P2
FIGURE 16	TABLE 2 (figure 16)	ident.	$CH_4$ $H_0$ O	{CH ₄	(H2O H,0	H ₂ O CH,	${\rm (H_2^{\dot{O}})}$	$(H_2^{\rm H})$	CH4	${\rm CH}_{\rm H,0}$	(H ₂ O {CH.	CH4 H,O	Cℋ₄
	$T_{A1}$	$   \nu \left( { m cm}^{-1} \right)   \left( { m vac.} \right) $	3038.5 3035.8	3034.4	3031.9	3030-8 3028-8	3025.8	3021.1	3017.3	3012-4	3010-3	3008.9 3003.7	2998-9
		line no.	15 16	21	18	$\begin{array}{c} 19\\ 20 \end{array}$	21	22	23	24	25	26 27	28
		ref.	44	4	44	44	44	44	4	44	44	44	44
		band										$\begin{array}{cc} \nu_3 & R3 \\ 2  u_5 & 3  u_5 \end{array}$	
		ident.	${\rm CH}_4 {\rm H}_2 {\rm O}$	CH4	{CH₄ (H _o O	H ₂ O	$\{ {\rm CH}_4 \ {\rm H,O} \}$	CH4 HCO	CH4	CH₄ H,O	$\left\{ {{ m H}_{{ m CH}}^2{ m O}}  ight\}$	CH4 CH4 H,O, O,	$\{ \begin{array}{c} \widetilde{CH}_4 \\ H_2 O \end{array} \}$
		$\nu \left( \mathrm{cm}^{-1} \right) \left( \mathrm{vac.} \right)$	3095.2	3089-7	3086-0	3082.6 3081.3	3079-6	3076-7	3073-3	3067.2 3064.3	3059-9	3057.7 3056.4	3048.4
		line no.	1	67	က	4 v:	9	7	ø	9	11	12 13	14


····

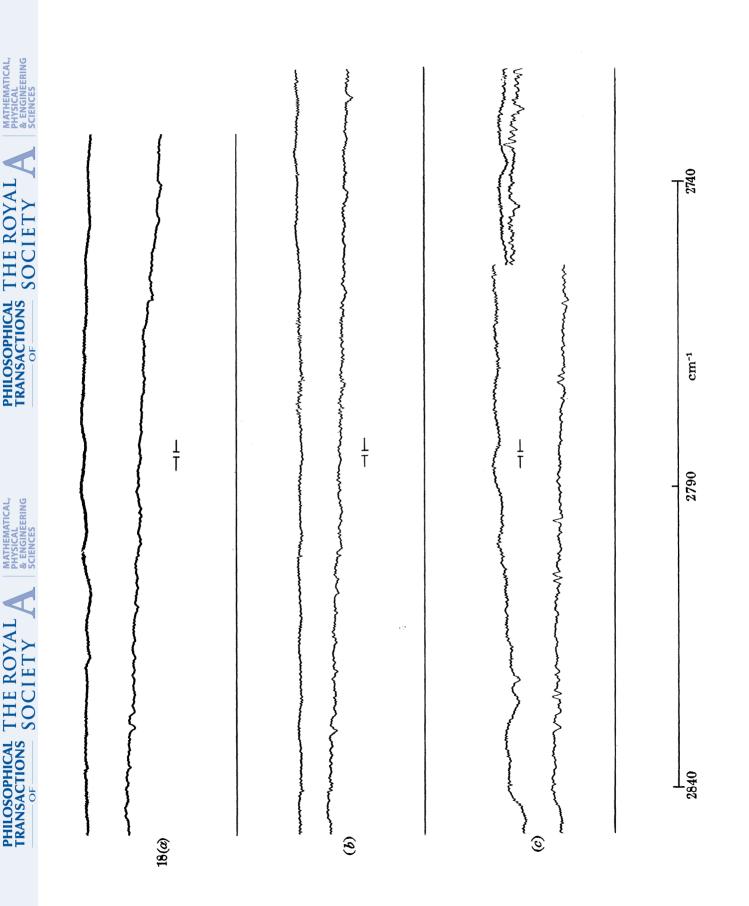
ATLAS OF THE INFRA-RED SOLAR SPECTRUM

#### 86

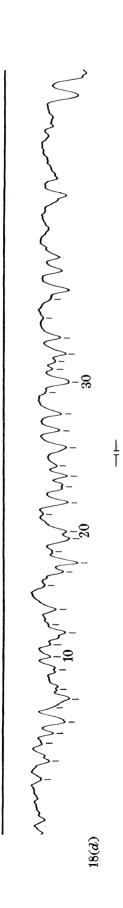






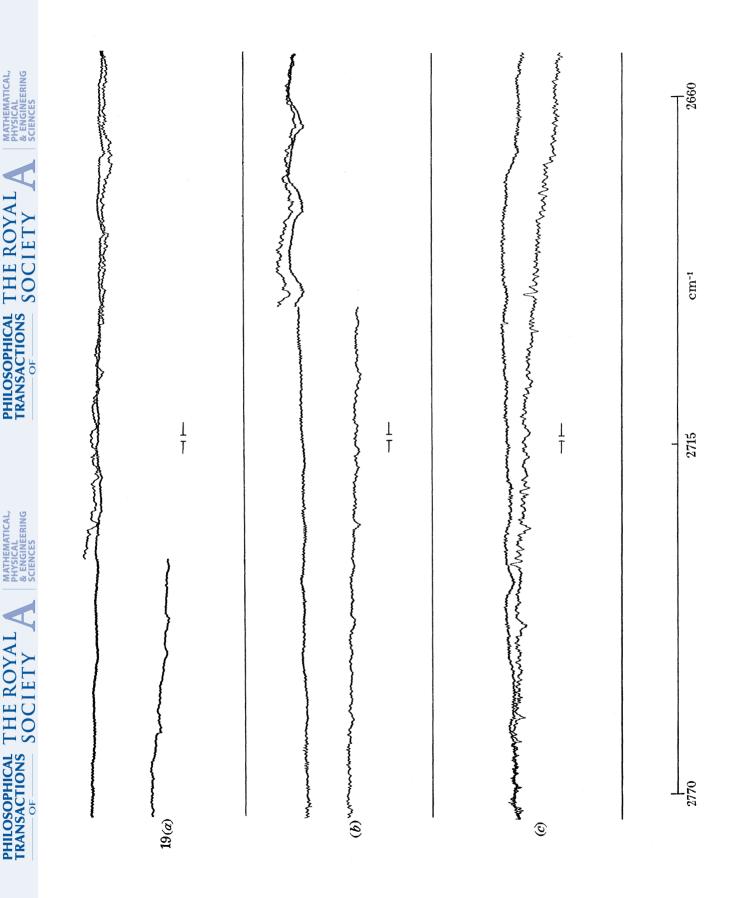

 ${\scriptstyle \begin{array}{ccc} \nu_{3} & P12 \\ \nu_{3} & P13 \end{array}}$  $egin{array}{cccc} v_3 & P14 \\ v_3 & P15 \\ v_3 & P16 \\ v_3 & P17 \\ 2v_2 & P17 \end{array}$ ident, GH4 (H₁O) (H₁O) (H₂O)  $\nu \left( {{\rm cm}^{-1}} \right) \ \left( {{\rm vac.}} \right) \ \left( {{\rm$ 2841.7 2830-8 18 17 4 44 4 4 P10P11 $\begin{array}{ccc} v_{3} & P8 \\ v_{3} & P9 \\ v_{3} & P10 \\ v_{3} & P11 \end{array}$  $\nu_3 P7$  $2\nu_2$  $\stackrel{ident}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset$  $\nu$  (cm⁻¹) (vac.) 2958.3 2953.6 2947.9 2947.9 2943.3 2943.3 2943.3 2947.9 2947.9 2947.9 2947.9 2947.9 2906.7 2906.7 2901.8 -264201-8 0

12


4

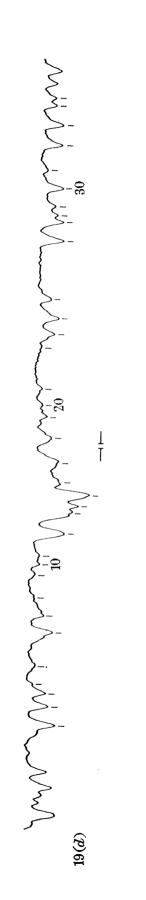
◄






Mathematical, Physical & Engineering Sciences TRANSACTIONS SOCIETY

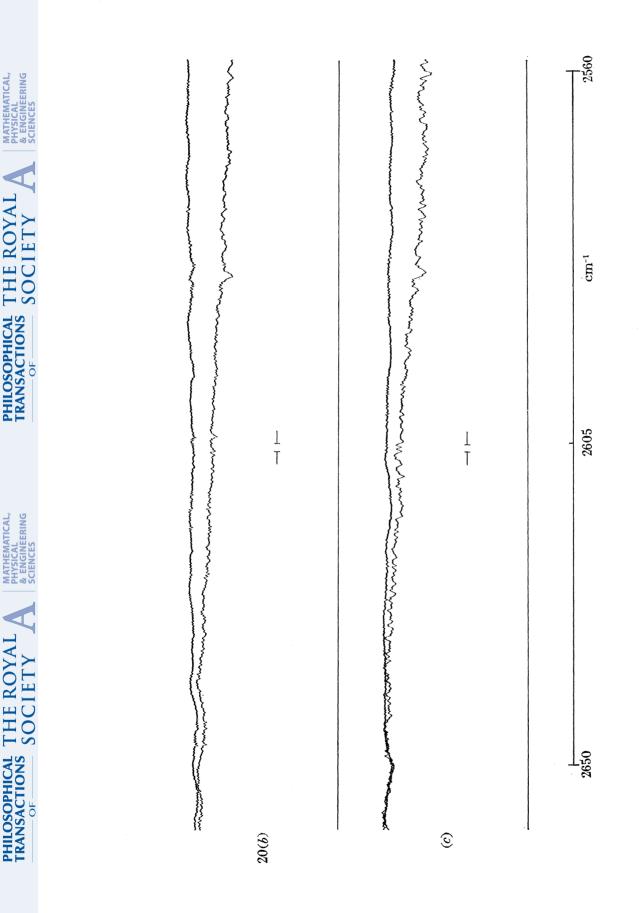


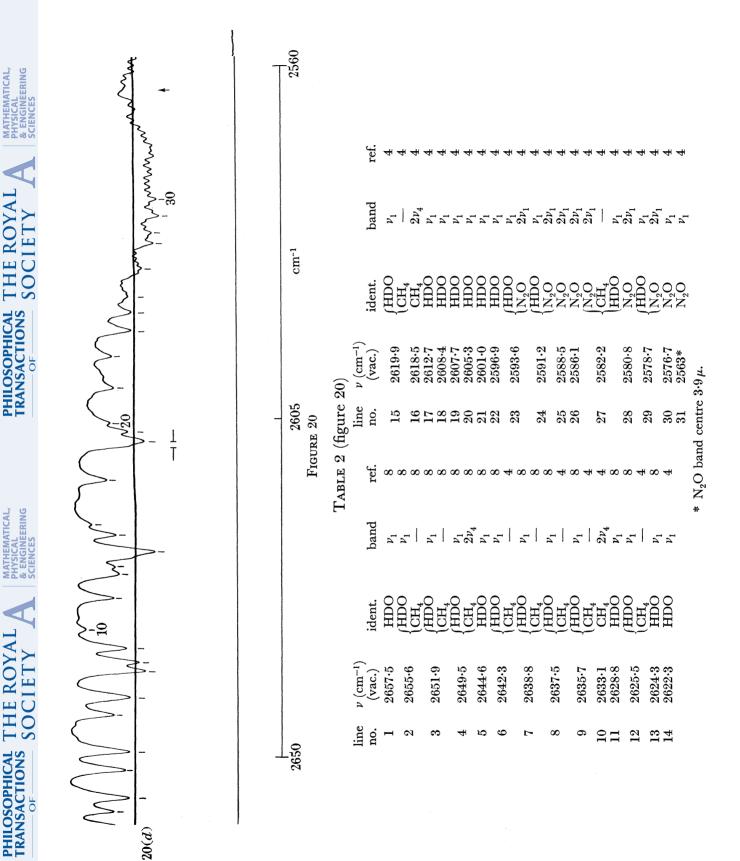

					band	ν ₁	$\nu^{}_{1}$		-	$\nu_{\rm l}$	$\nu_1$		7.7	-	ν,	۳ <u>1</u>	$\nu_{\rm I}$		$2 u_4$
					ident.	(HDO (CH,	(HDO	(UH ₄ (HDO	{CH ₄	<b>HDO</b>	(HDO		(HDO	(CH ₄	, HDO	HDO	OUH	$CH_4$	$\operatorname{CH}_4$
-	2740			$\nu (\mathrm{cm}^{-1})$	(vac.)	2785-9	2783.3		2.180.2	2777.5	2774.0	9779.4		1.07.12	2768.8	2767.5	2764.8	2762.0	2758-2
				line	no.	25	26		27	28	29	30	) 	31	32	33	34	35	36
	1				ref.	∞ ∞	∞ -	4 ∞	8	8	<b>∞</b> 0	xx	) 00	8	8	x	œ	ø	4
	cm ⁻¹		e 18)		band	ν ₁	$\nu_1$	م ^ا	Γ. ¹ Λ	•	$\nu_1$	<u>-</u>	-		۳	•	$\nu_{1}$		$\nu_1$
1	2790	FIGURE 18	TABLE 2 (figure		ident.	(CH, CH,	QQH	OUH	(HDO	(CH₄	HDO	CH₄ HDO	CH,	$\operatorname{CH}_4^{1}$	(HDO	(CH₄	) HDO	(CH₄	HD0
	••		Ta	$\nu \; (\mathrm{cm}^{-1})$	(vac.)	2813-0	2811-0	2805-4 2805-4	0.000	7.0007	2801.6	5.797.9	2794.8	2793-7	0.0070	0.7617	0.087.6		2787.5
				line	no.	12	13	15	υL	01	17	81 10	20	21	00	4	93	2	24
				,	ref.	x x	x x	x x	8	8	<b>∞</b> 0	x	00	4	4	×	ø	ø	
					band	ν ₁	$\nu_1$			$\nu_1$	I	- <u>'</u>	-	٣	$2^{i}_{V_{2}}$	ν ¹	$\nu_1$		
_	2840				ident.	(HDO (CH,	(HDO	CH4 CH1	CH ¹	JHDO	(CH4	CH₄ HDO	CH,	(HDO	,HO,H	HÌDO	∫HDO	(CH4	•
				$\nu (\mathrm{cm}^{-1})$	(vac.)	2838.3	2835.0	2831.9	2830.2	9898.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2822-3		C•7787	2819.8	2817-0	9815.0	0.0107	
				line	no.	Г	61	~	•4	ĸ	יכ	9 5	- (	x	6	10	11	11	

89

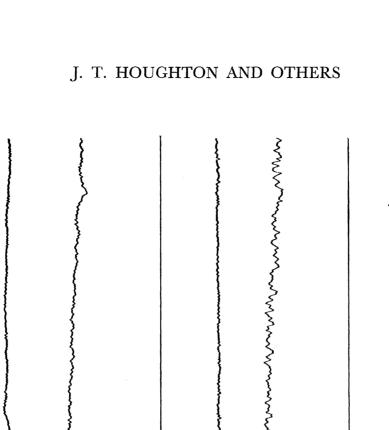






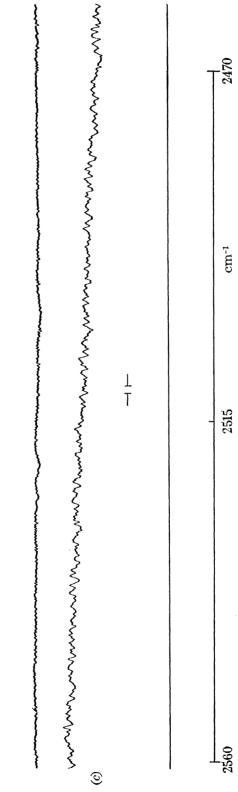

2660																				
		ref.	<b>x</b>	∞ ·	4 x	) X	ø	×	x	x	00	×	<b>∞</b> (	xx	o oc	×	x	8	x	x
		band	-	,	$2\nu_4$ $\nu$ .		ν, 1	<i>۳</i>	, η	۲ <mark>۱</mark>	-	۳ı	ν ₁	ν ₁	ν.	-	μ,	۳. ۲	Γ, Γ	ר ע.
cm ⁻¹		ident.	$CH_4$	$\operatorname{CH}_{4}$	{CH4 {HD0	HDO	HDO	HDO	HDO	(HDO	{CH ₄	HDO	HDO O	(HDO	(HDO	CH,	, HDO	HDO	HDO	HDO
	(61	$\nu (\mathrm{cm}^{-1})$ (vac.)	2706.6	2704.8	2697.6	2695.5	$2693 \cdot 1$	2690.1	2680.9	0.0796	0.0107	2676.7	2675-4	2672.8		2669.9	2666.4	2663.3	2660.6	2659.6
2715 Figure 19	figure	line no.	20	21	22	23	<b>24</b>	25	26	5	11	28	29	30	10	31	32	33	34	35
2715 Figure	Table 2 (figure 19)	ref.	4	<b>∞</b> (	<b>x</b> 4	4	4	ø	00	4	ø	×	4	xx	<b>) 00</b>	4	×	ø	4	α
	$\mathbf{T}_{\mathbf{r}}$	band	$2 u_4$	$\nu_1$	۲ ^۱		$2 u_4$	$\nu_1$	•	-	μ,	, ¹	$2 \tilde{ u}_4$	۲ ۱	7.4	р. 1	, 'Y	р, г	$2\nu_{s}$	۳, ±
		ident.	$CH_4$	HDO	CH, CH,	$\operatorname{CH}_{4}^{1}$	$CH_4^{\dagger}$	HDO	CH4		HDO	OQH	(CH4		HDO	HDO	HDO	HDO	$CH_{A}$	НПÓ
		$\nu (\mathrm{cm}^{-1})$ (vac.)	2756.9	2753.8	2751.6 2750.0	2746.2	2741.8	2738-9	2737-4	2732.8	$2731 \cdot 1$	2729.9	2726-6	9.793.6	2722.2	2720-7	2718.9	2716.4	2712.0	2708.3
		line no.	I	2	n 4	5 2	9	-	œ	6	10	11	12	13	14	15	16	17	18	19
2770	•																			

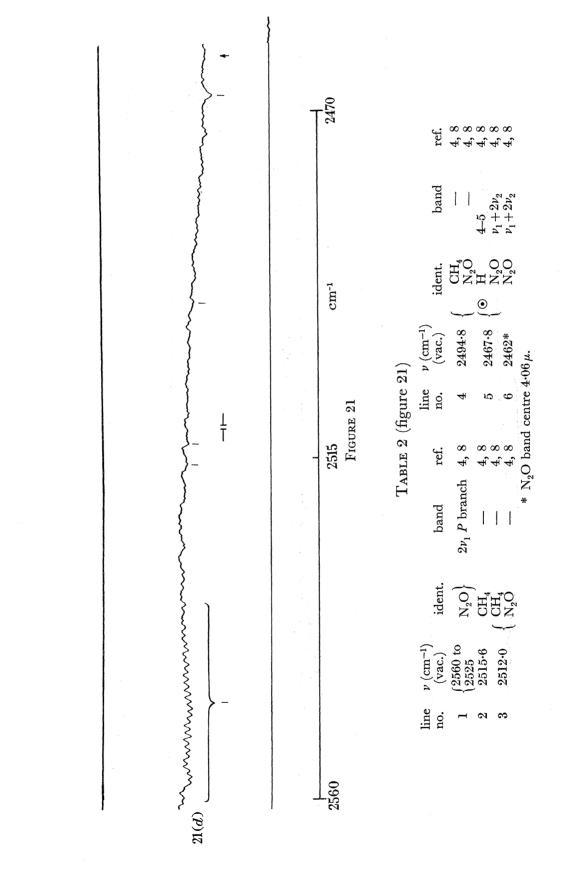

91

# ATLAS OF THE INFRA-RED SOLAR SPECTRUM







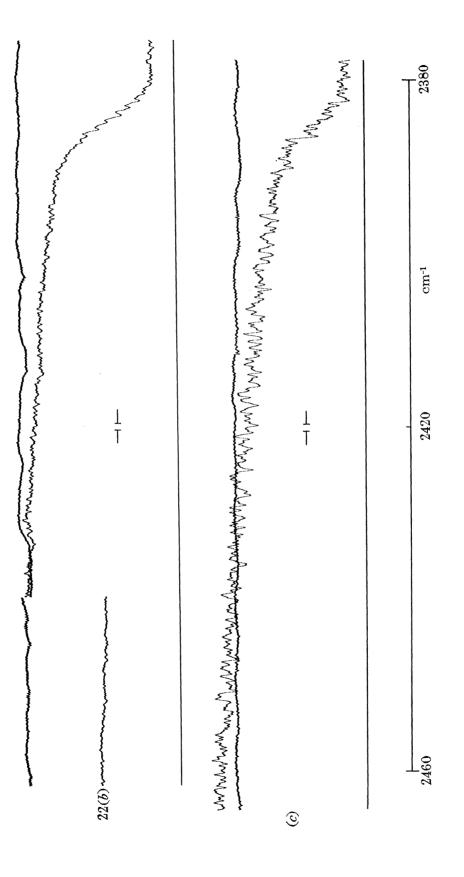




L T

mannen

21(b)






MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

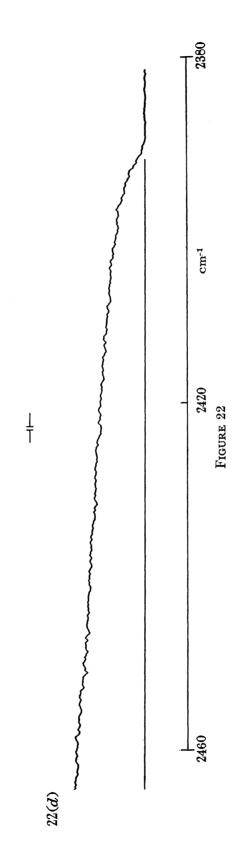
TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

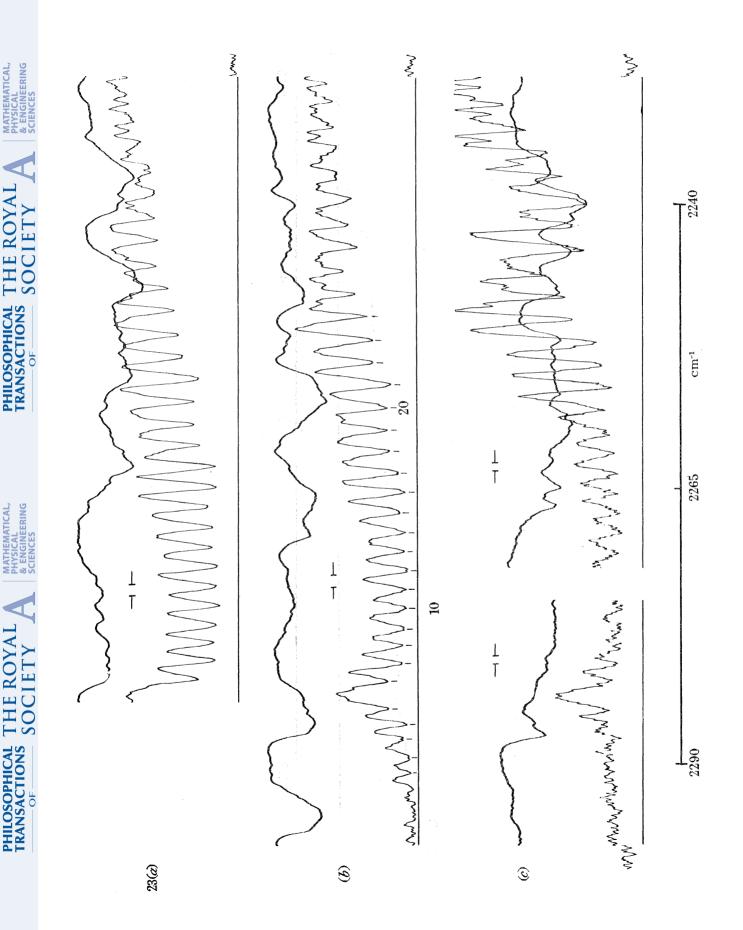





MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

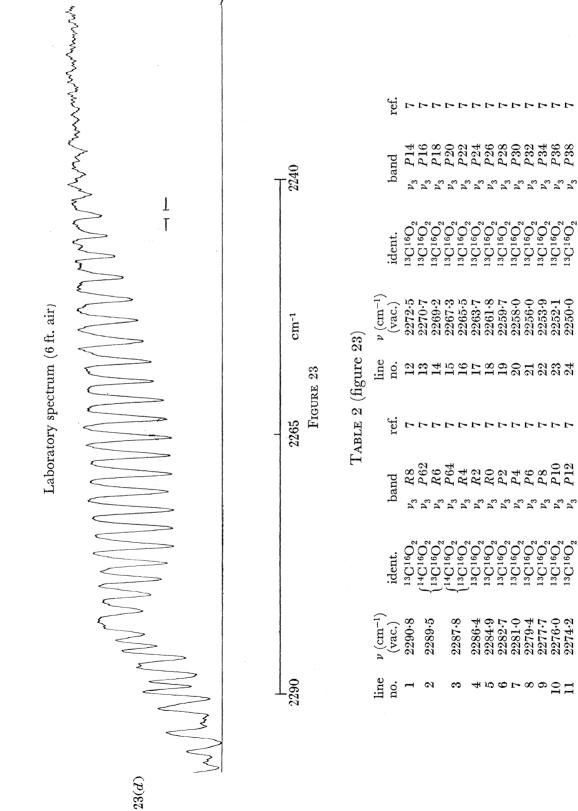
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY





13-2


#### 98





MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

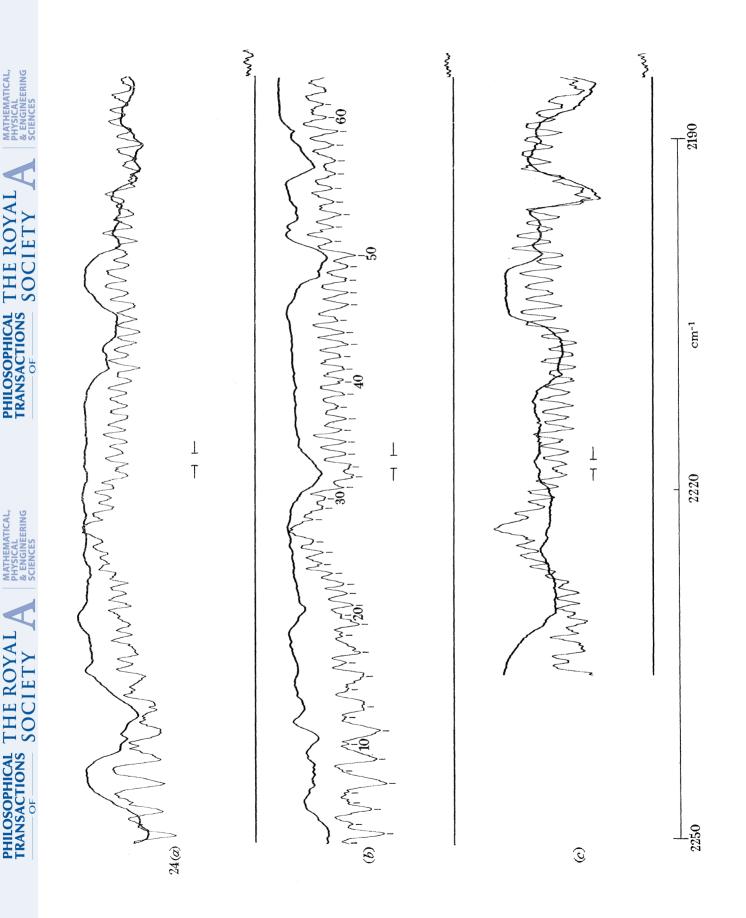
SOCIETY



13C1602 13C160 2272-5 22272-5 22269-9 22269-7 22269-7 22259-7 22259-7 22253-9 22253-9 22253-9 22253-9 22252-1 22250-0

 $\begin{array}{c} 2286.4\\ 2284.9\\ 2284.9\\ 2282.7\\ 2281.0\\ 2281.0\\ 2277.7\\ 2277.7\\ 2276.0\\ 22774.2\\ 2276.0\\ 2274.2\\ \end{array}$ 

42928001


2289.5

2

2287.8

ന

#### ATLAS OF THE INFRA-RED SOLAR SPECTRUM



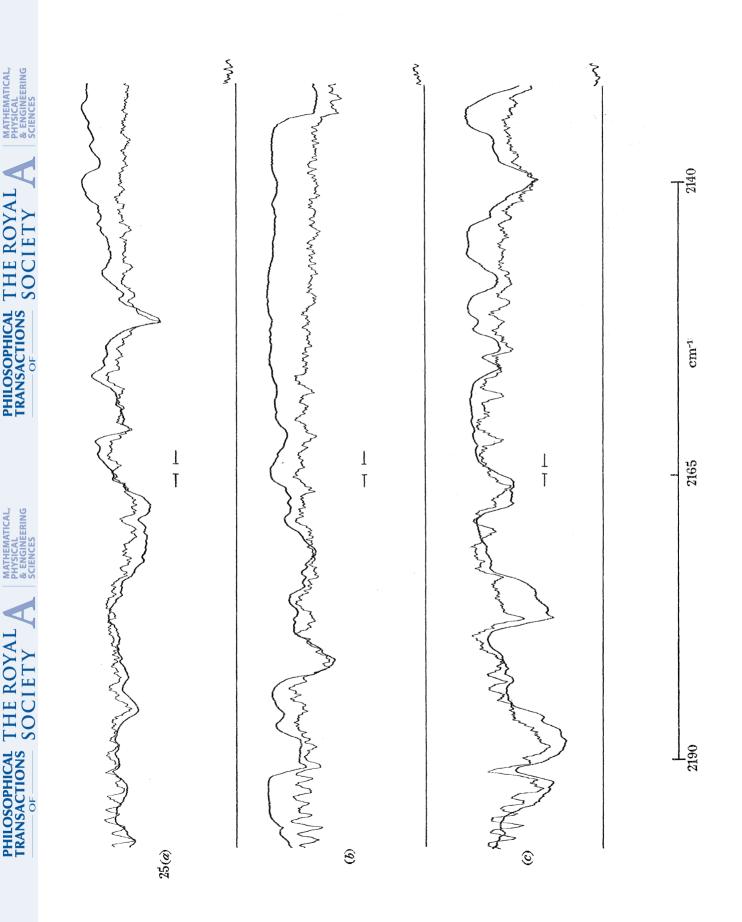


⊥ T

24(d)

MMMMM کحر

ATLAS OF

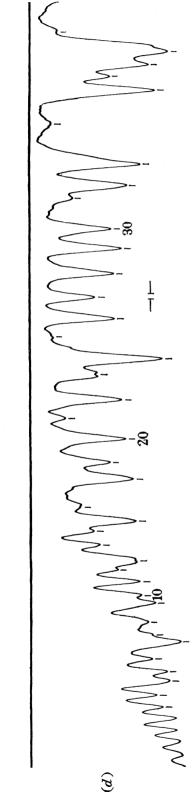

2190

cm⁻¹

2220

2250

TH	ΕI	NFF	RA-	-RE	ED	SC	DL	AF		SP	E	CJ	[R	UI	M					101			
		ref.	4	44	4,	44	4	44	4	4	4	4	4 4	# <del>4</del>	4	4 4	╡╋	4,	44	4 4	4	44	4
		band	$p_3$ $P13$	$1-0 R19 \ v_3 P14$	$v_3 P15$	${\scriptstyle \nu_{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\nu_{3} P17$	$\nu_{3} P18$	1-0 R17	$ u_3  P20 $	$\nu_3 P21$	$\nu_3 P22$	$\nu_{3} P23$	$v_{\circ} P24$	$v_3 P25$	$\nu_{3} P26$ 1_0 R15	$\nu_{3} P27$	$\nu_3 P28$	$\nu_{3} P29$ 1-0 R14	$\nu_3 P30$	1-0 $R13$	$v_3 P32$ $v_6 P33$	$v_{3} - P34$
		ident.	$\int N_2 O$	N,O	N ² 0	CO CO	N ₂ O	O ² N		N ₂ O	$N_2O$	$N_2^{-}O$	N ² O	O°N	$N_2^2O$	${\rm N}^{\rm N}_{\rm O}$	N ₂ O	N ₂ 0	CO CO			N ² O	$N_2^2 O$
		$\nu \left( \mathrm{cm}^{-1} \right) $ (vac.)	2212.3	2211.3	2210.4	2209.5	2208.6	2207-6	2206.7	2205-7	2204.7	2203.7	2202.7	2201.8	2200.8	2199.8	2198.7	2197-7	2196.7	2195.7 2194.6	2193.5	2192.4	2191.4
		line no.	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	20	209 90	61
		ref.	4	44	4.	44	4	4 4	₽₹	4	4	4	4.	<del>1</del> 4	4	4 ~	¥ 4	4.	44	44	4	44	ł
	e 24)	band		$v_{3} P54 v_{5} R11$		$v_3  R9 \\ v_8  R8  R8  R8  R8  R8  R8  R8  $			$v_3 R_5$	$\nu_3 R4$	$\nu_3$ R3	$\nu_3 R2$	$\nu_3 R1$	$v_3 P_1$	$\nu_3 P2$	$\nu_3 P3$	v3 P5	$\nu_3 P_6$	$v_3 P7$	$v_{3} P9$	$\nu_3 P10$	$v_3 P11$	1 1 20
FIGURE 24	TABLE 2 (figure 24)	ident.	$N_2O$	$ \underbrace{ \begin{bmatrix} 13C16O_2 \\ N_0O \end{bmatrix} } $		N2O	$\left\{\overline{13C16O_2}\right\}$	N20 N	N.O	N,O	$N_2O$	$N_2O$	O ^z z		$N_2^2O$	N ² O	N ² O	N ₂ O		[N ² 0 00	N ₂ O	N2C	) 7
	TA	$   \nu \left( { m cm}^{-1} \right)   \left( { m vac.} \right) $	2234.0	2233.3		2231.8	2230-9	2230.2	2228.6	2227.8	2227.1	2226.2	2225.5	2222-9	$222 \cdot 0$	2221-2 9990.4	2219.5	2218.6	2217-7	2215.9	2215.1	$2214 \cdot 1$ $2213 \cdot 2$	
		line no.	16	17	( ,	<b>X</b>	Гĥ	20 91	55	23	24	25	26 26	58- 78- 78-	29	30 21	32	33	48 47 72	36	37	88 80 80	0
		ref.	4	44	4,	44	4	44	4	4	4	4	4.	<del>1</del> 4	4	4~	H 4	4.	44	44	4	44	4
		band	$\nu_{3} R34$	$\nu_{3}^{\nu_{3}} P40 \ \mu_{5} R33$	$\nu_3 R32$	$v_3 K31 v_5 P42$	$\nu_{3}^{2} R30$	$\nu_{3} R29$	$v_3 R27$				$v_{3} R24$							$v_3 R17$			
		ident.	N ₂ O	$\begin{cases} {}^{13}C^{16}O_2\\ N_0O \end{cases}$	$(N_2^{2}O)$	N2U [13C16O,	$\{N_2O_2$	N2O	N ² 0	( ¹³ Č ¹⁶ O,	$\left\{ N_{2}O^{2}\right\}$	$(N_2^{-}O$	N2O		$(N_2^2O)$		N ₂ O ²	$(N_2O$	N2O [13C16O_		N2O		$\left( \frac{1}{N_{2}^{2}O} \right)$
		$\nu \left( \mathrm{cm}^{-1} \right) $ (vac.)	2248.7	2247.7		2246-9	2245-7	0.346.0	2244·4		2243.7		2242.4	2241.6	1	2240.5	2239.5		2238-4	2237-0	2236.3	2234.9	
		line no.	I	69	d	no A	4	ĸ	. v		2		œ	6		10	11	( ,	12	13	14	15	)




MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES	
TRANSACTIONS SOCIETY	

MATHEMATICAL, PHYSICAL & ENGINEERING

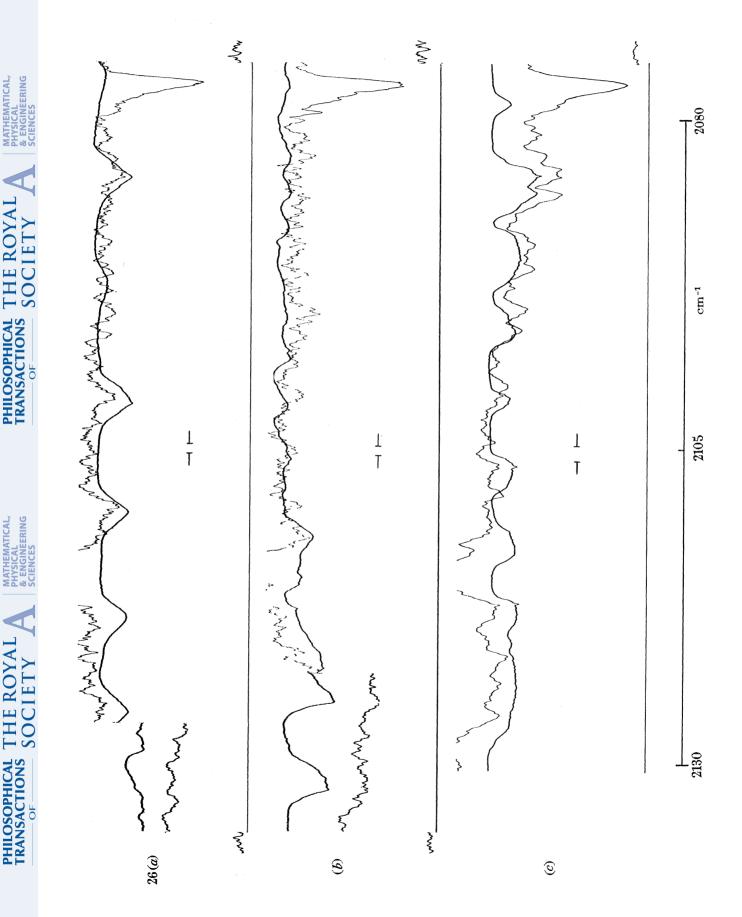
TRANSACTIONS SOCIETY



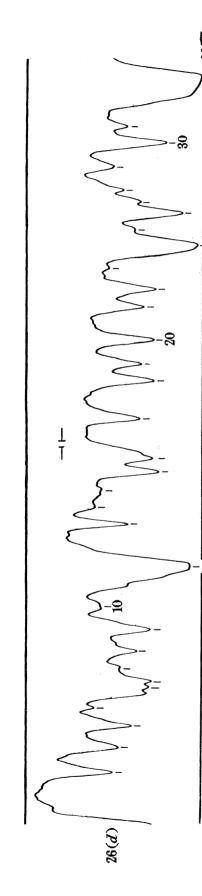


2140	
cm ⁻¹	
2165	FIGURE 25
2190	

		-																	
		band	1-0 R3	$ u_2 $	1-0 R2	ν,	1-0 $R1$		I-0 R0	ν,	l=0 R	I-0 PI	V,9	ν,	1-0 P2	1-0 R			
		ident.	CO	$\rm H_2O$	80	Н,О	CÕ		SO	Н,О	13Č16O	80	H,O	$H_{0}$	Q	13C16O			
	$\nu (\mathrm{cm}^{-1})$	(vac.)	2158.4	2156.7	2154.7	2152.6	2151.0	2148.5	2147-4	2145.6	2141.3	2139.5	2138.3	2137.3	2135.8	2134.4			
	line	no.	26	27	28	29	30	31	32	33	34	35	36	37	38	39			
		ref.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
re 25)		band	$\nu_3 P46$	$\nu_3 P47$	1-0 R8	$\nu_{s}$ P48	$\nu_{s}$ P49	1-0 R7	$ u_3  P50 $	$\nu_{3}$ P51	ν,	$\nu_3 P52$	1-0 R6	ν,	1-0 R5	$ \nu_9 $	1-0 R4	$ u_3 $	•
TABLE 2 (figure		ident.	N,O	N,O	<u>c</u> o	(N,O	N,O	[CÔ	0°N	N,O	ÌΗ,O	(N,O	ÇÕ	H,O	CŐ	Н,О	CÕ	$N_2O$	1
$T_A$	$\nu (\mathrm{cm}^{-1})$	(vac.)	2178.3	2177-1	0 0110	C.0/17	2174.7		2172.9		1 1210	<b>7.1/17</b>	2169.3	2167.5	2165.7	2163.5	2161.9	2159.6	
	line	no.	14	15	υL	01	17		18		OL.	гя	20	21	22	23	<b>24</b>	25	
		ref.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		band	$\nu_{3}$ P33	$\nu_3 P34$	1-0 R12	$\nu_{*} P35$	$\nu_{s}$ P36	$v_{3}$ P37	1-0 <i>R</i> 11	$\nu_{*} P38$	$\nu_{s}$ P39	$\nu_{3}$ P40	1-0 R 10	$\nu_{s} P41$	$\nu_3 P42$	$\nu_3 P43$	$\nu_3 P44$	1-0 R9	$\nu_3 P45$
		ident.	N,O	N,O	Ō	(N _o O	N,O	N,O	ſĊŐ	O°N)	N,O	N,O	,cõ	(N,O	N,O	N,O	N ₂ O	Ō	$(N_2O$
	$\nu \; (\mathrm{cm}^{-1})$	(vac.)	2192.6	2191.6	1 0016	2190.4	2189.6	2188.4	0 1010	0.1812	2186.1	2185.1	7 6016	0.2012	2182.8	2181.6	2180.4	9170.0	0.6117
	line	no.	Г	61	c	o	4	ũ	c	0	7	8	c	ת גי	10	11	12	61	01 •
														v	)L	25	14.		<b>3.</b>


5 9 444444444444444444

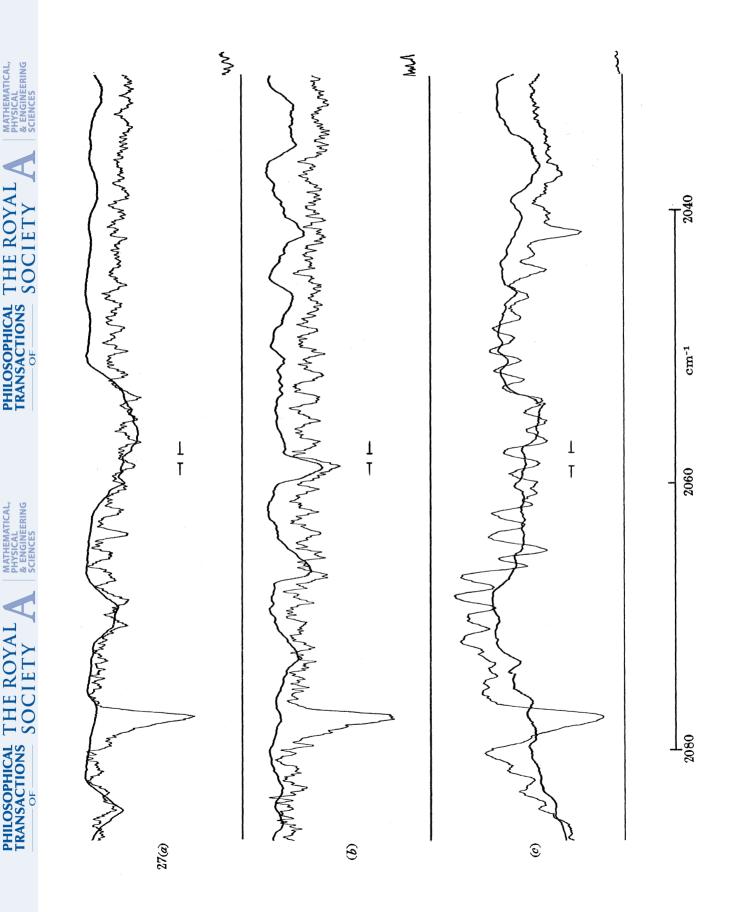
ATLAS OF THE INFRA-RED SOLAR SPECTRUM


Vol. 254. A.

14

25(d)

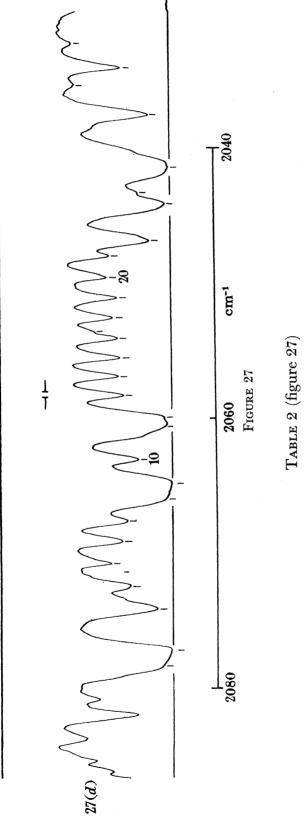







0					7	COIT		cm ⁻¹				2080
			ı		FIGUR	FIGURE 26						
				Tai	LABLE 2 (figure	figure <b>;</b>	26)					
line	$\nu (\mathrm{cm}^{-1})$	:			,	line	$\nu (\mathrm{cm}^{-1})$				,	
no.	(vac.)	ident.	banc		ref.	no.	(vac.)	ident.	band		ref.	
I	2131.6	CO	1–0		4	17	2103.2	CO	1-0	P10	4	
2	2129.6	c0,	$2\nu_1 - \nu_2$	ò	4	18	2100.5	H,O	ν,		4	
ი	2127-7	00	1– <u>0</u>		4	19	2099.1	CÕ	$1^{-0}_{-0}$	P11	4	
4	2126.1	co,	$2\nu_1 - \nu_2$		4	20	2097.3	O,H	ν,		4	
		$\int 1^{3}C^{16}O$	$1-\hat{0}$		4	21	2094.9	CŐ	$1_{-0}$	P12	4	
ñ	2124.2	CO,	$2\nu_1 - \nu_2$		4	22	2093.5	CO,	$\nu_1 + 2\nu_5^2 -$	- V,	4	
		(H,Õ	ν, -		4	23	2091.7	co,	$\nu_1 + \nu_2$	$R$ $\mathbf{\tilde{l}8}$	4	
9	2123.6	CÕ	$1^{-0}_{-0}$	P5	4			ĺΗ,Ô	V, 2		4	
Г	0100.7	$ ho H_2O$	$\nu_3 - \nu_2$		4	24	2090.6	{CÕ2	$\nu_1 + \nu_2$	R16	4	
-	1 1 1 1 1	lCO3	$2\nu_1 - \nu_2$		4				1-0 -	P13	4	
x	2121.3	$(\mathrm{H_2O}$	$\nu_2$		4	25	2088.5	CO2	$\nu_1 + \nu_2 R 14$	R14	4	
Ď		$(CO_2)$	$2\nu_1 - \nu_2$		4	9.6	2087.1	$\int CO_2$	$\nu_1 + \nu_2$	R12	4	
<b>0</b>	2119.7	00	1-0	P6	4	01	T. 1007	(H,O	$\nu_9$		4	
10	2118.0	်			4	27	2086.3	CÕ	$1^{-0}_{-0}$	P14	4	
ΙI	2115.6	Õ	1-0	P7	4	28	2085.4	CO,	$\nu_1 + \nu_2$	R10	4	
12	2111.6	SO	1-0	P8	4	29	2083.8	co,	$\nu_1 + \nu_2$	R8	4	
13	2110.2	c0,	$2\nu_1 - \nu_2$		4			[CO ²	1-0	P15	4	
14	2108.7	co,	$2\nu_{1}^{2}-\nu_{3}^{2}$		4	30	2081.9	CO,	$\nu_1 + \nu_2$	R6	4	
15	2107.4	CO	<b>1</b> -0	P9	4			, Η Ô	V., 2		4	
0 -		( ++						4	4			

14-2

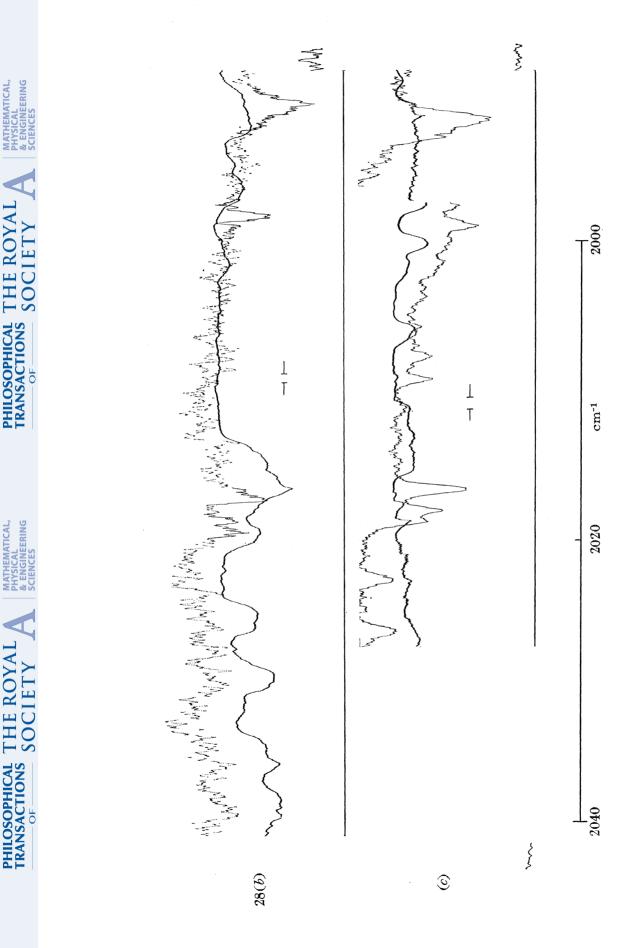





PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & BENGINEERING

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

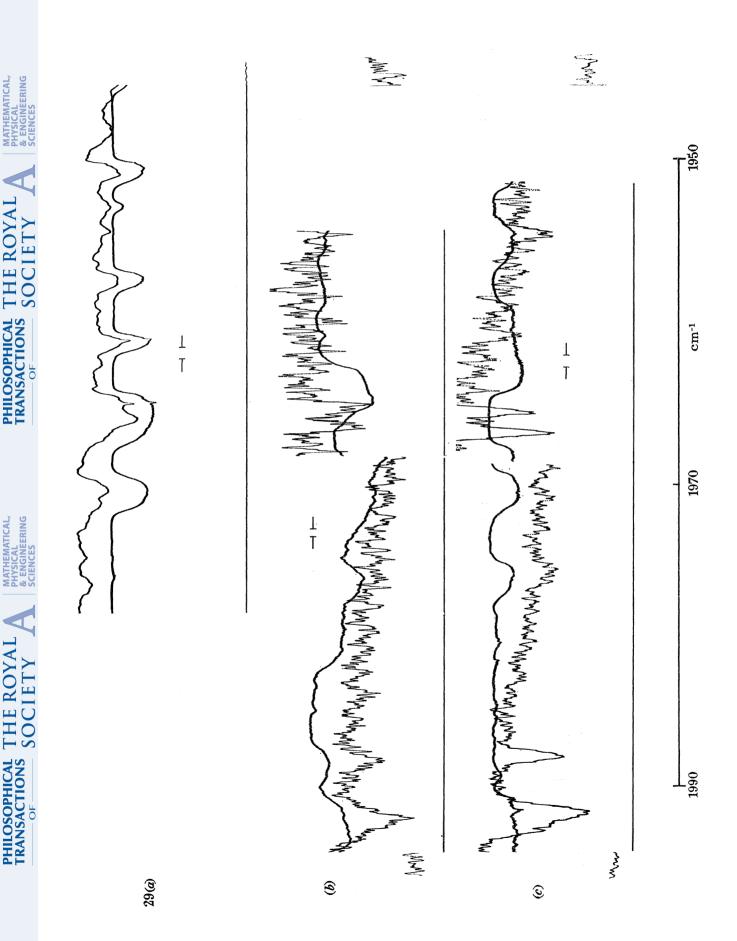
TRANSACTIONS SOCIETY



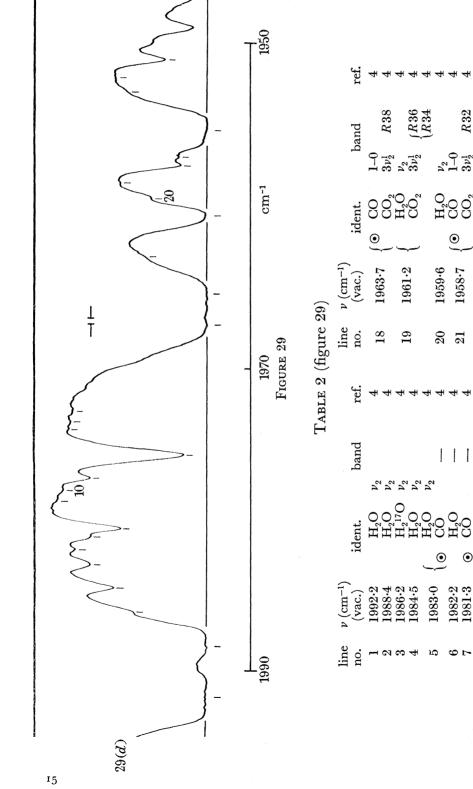

		X																
		band	$\nu_1 + \nu_2  P34$	$\nu_1 + \nu_2  P36$	$\nu_1 + \nu_2  P38$	$\nu_1 + \nu_2  P40$	V2 5.0	$\nu_1 + \nu_2 P42$	$\nu_1 + \nu_2  P44$	$\nu_1 + \nu_2  P46$	$\nu_2$	$\nu_2$	$\nu_1 + \nu_2 P54$	V2	$\nu_1 + \nu_2 - P56$	$v_1 + v_2 P58$		
										CO2								
	$\nu (\mathrm{cm}^{-1})$	(vac.)	2050.5	2049.0	2047.5	2046.0	2044-4		2042.9	2041-3		2037.4	2035.4	2034-0		2032.3		
	line	no.	19	20	21	22	93	2	24	25	2	26	27	2.8	2	29		
		ref.	4	4	4	4	4	4	4	4	4	4	4	4	4	4		
		band	ν,							1-0 P20							1	
TABLE 2 (IISUIC 21)		ident.	(H,O)	{CÔ,	CO	, CO,	$\operatorname{CO}_{2}^{2}$	(CO,	{H,Õ	(cô	CO2	CO.	CO2	$CO_2$	H,18O	çõ,	1	
T	$\nu \; (\mathrm{cm}^{-1})$	(vac.)		2064.5		2062.7	2061.3		2059.8		2058.2	2056.6	2055.2	2053.6	2052.9	$2052 \cdot 1$		
	line	no.		6		10	11		12		13	14	15	16	17	18		
										4								
		band	1-0 $P16$	$\nu, +\nu, R0$	$v_{1} + v_{2} = 0$	$v_{0} - v_{0}$	l_0 [^] P17	ν,	$v_{1}+v_{2}$ P4	$\nu_1 + 2\nu_2^2 - \nu_2$	$\nu_1 + \nu_2 P \tilde{6}$	$\nu_1 + \nu_2 P 8$	1-0 ² P18	$\nu_1 + \nu_2 P I 0$	$\nu_1 + \nu_2 P I 2$	$v_1 + v_2 P I 4$	$\nu_2$	
		ident.	COD			(H, O	ĺcÔ	H _o O	CO.		Ć,	CO,	CO	(co,	ÇO [°]	CO,	$\{H_2 \hat{O}\}$	I
	$\nu  ({\rm cm}^{-1})$	(vac.)		2077-3		2076-9	2073-2				2072.2	2070.6		2068-9	2067-5		2065-9	
	line	no.		-		51	က				4	20		9	7		x	

***

ATLAS OF THE INFRA-RED SOLAR SPECTRUM


ref.



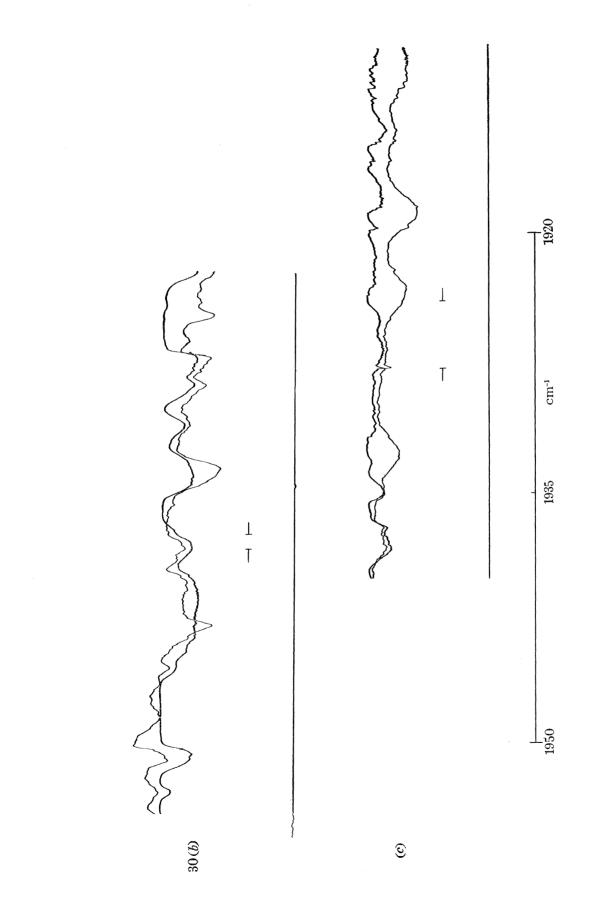





	c	ret.	4,	44	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		ident. band	$H_2O$ $\nu_2$	$H_2O  \nu_2$ 13 $C16O  \nu \perp \nu$	$CO \sim 2 \cdot 1 + 2$	$^{13}\text{C}^{16}\text{O}_2 \ \nu_1 + \nu_2$	$^{13}\text{C}^{16}\text{O}_2 \ \nu_1 + \nu_2$	$H_2O = \nu_3^2 - \nu_2^2$	<u>Q</u>	$ m H_2O$ $ u_2$	$\mathrm{H}_2^{-}\mathrm{O}$ $\nu_2^{-}$	$\mathrm{H_2^{18O}}$ ? $\nu_2$	$H_2O$ $\nu_1 - \nu_2$	CO 1-0	CO	$H_2O$ —	$\mathrm{H}_{2}^{-}\mathrm{O}$ $ u_{2}$	$\mathrm{H_2O}$ $\nu_2$
				Ļ	$\sim$		ت	~	•				_	$\tilde{\mathbf{O}}$	۲			
28)	$\nu (\mathrm{cm}^{-1})$	(vac.)	$2018 \cdot 3$	2016-8	$2015 \cdot 1$	2013.5	0100	<b>7.</b> 7107	2011.4	2009.3	2007.6	2005.6	0003.9	10007	2002.1	2000.9	1998-9	1992.2
figure 2	line	no.	15	16	17	18	01	ля	20	21	22	23	16	H	25	26	27	28
LABLE 2 (figure		ref.	4	4 -	₽₹	4	4	4	4	4	4	4	4	4	4	4	4	4
$\mathbf{T}_{\mathbf{A}}$	,	q	P50	DEG	P54		P56	P58	P60		P62							
		ban	$\nu_1 + \nu_2 P50$	ν ₂ "' ' "	$v_1 + v_2 + v_3$	7°,	$\nu_1 + \nu_2$	$\nu_1 + \nu_2$	$\nu_1 + \nu_2$	ν, ²	$\nu_{1} + \nu_{2}$	$\nu_{1} + \nu_{2}$	$\nu_2^{-1}$	$1_{-0}$	$\nu_{9}$	$\nu_{1} + \nu_{2}$	$\nu_{1} + \nu_{2}$	$\nu_2^{-1}$
	:	ident.	$\overline{\mathrm{CO}}_2$	H ² O		H"Ó	CŐ	CO,	co,	$H_{,18}$ O	CÔ,	13C ¹⁶ O ₂	$H_{2}O$	13C16O	H,O	13Č16O,	13C16O,	$H_2O$
	$\nu (\mathrm{cm}^{-1})$	(vac.)	2038.5	$2037.4$ {	2035-4	J 077600	0.4007	2032·3	2030.9	2030.2	J 6.0006	e.6707	2026.6	2025.0	2023.0	2021.5	2019.7	2019.0
	line	no.	Ţ	61	co	Ţ	<del>1</del>	5	9	2	0	0	6	10	11	12	13	14







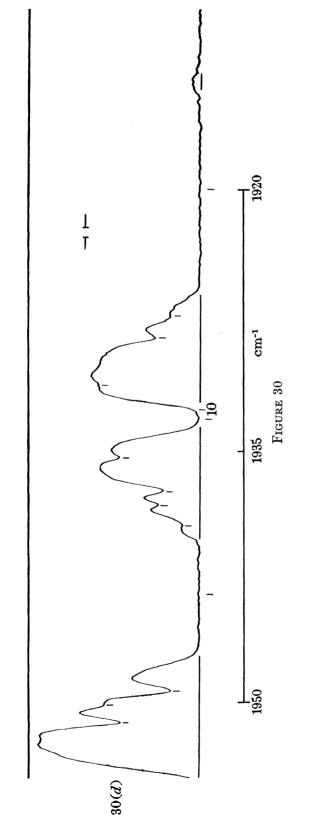

		ref.	44	44	44	44	4	4 4	44	44	4	44	
		and	R38	${{\nu_2}\atop{3{\nu_2}}}^{\prime_2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(K34	R32		R30	R28	[R26	R24	R22	
		dent.	000	$H_2 \tilde{O}_2$	О"Н	ပ္ပံပိ	$H_2 \tilde{O}$	CO, EO	Н <u>,</u> О СО,	, OO	CO ₂	H ₂ O	N
		.4		$\smile$		<u> </u>	, ,	<u> </u>	$\overline{}$	•		<u> </u>	,
igure 29)	_			1961.2									
	line	no.	18	19	20	21	22	23	24	25	$\overline{26}$	27	
ABLE 2 (figure		ref.	44	44	44	44	4	44	44	44	4	44	4
T		band	$V_2^{V_2}$		ν ₂		$\nu_{3} - \nu_{2}$	$^{ u_2}_{1-0}$	ν, 	ν2 	1-0	ľ.	$\nu_2^2$
		ident.	${ m H_2^{00}O}$	$H_2^{17}O$	⊙ COO	о СО СО	$\widetilde{H_{20}}$	⊙ CO CO	⊙ CO H,¹8O	• CO CO	000	⊙ H°O	$H_2^2O$
	$\nu \; ({ m cm}^{-1})$			1986.2 1984.5									

ø

ATLAS OF THE INFRA-RED SOLAR SPECTRUM

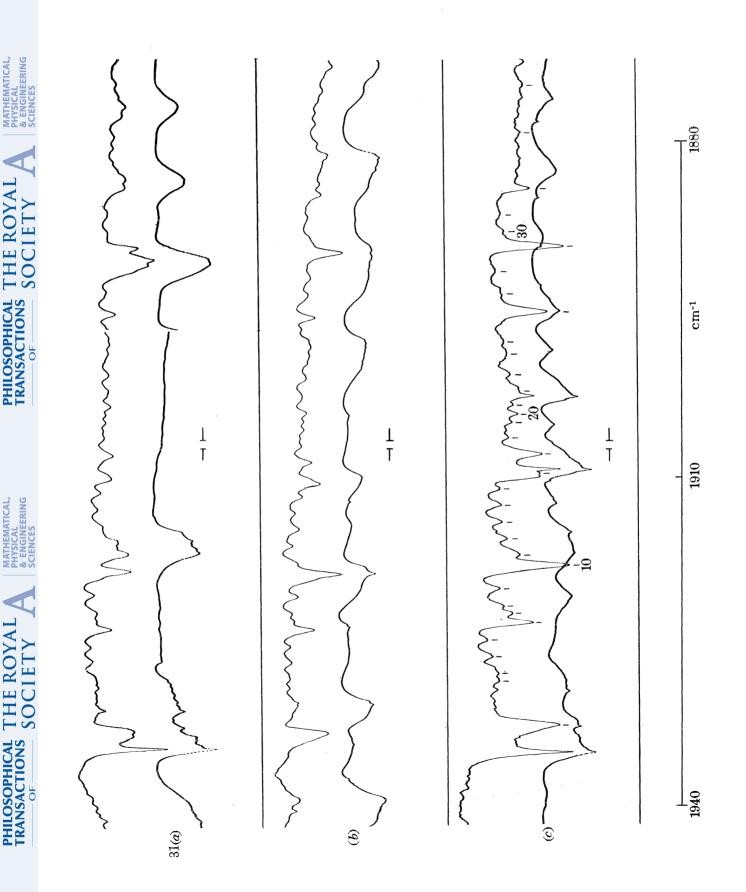
Vol. 254. A.




MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

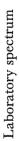
TRANSACTIONS SOCIETY

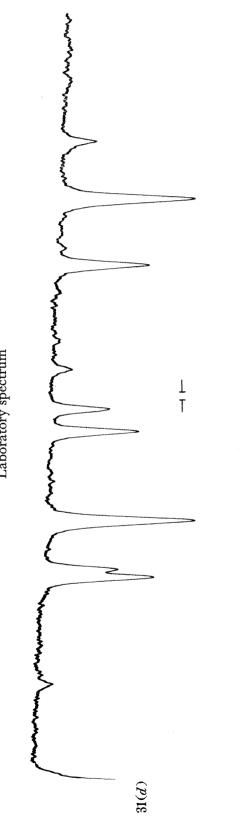
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY






	ref.	44	4	4 4	4	4~	₩ <del>4</del> 1	
	band	$v_2^{\nu_2}$	v2 &		$\frac{v_2}{3v_2^1} P6$	ν2 3.1 DS	Ur2 10 Vs	4
	ident.	H20 CO2	$H_2^{18}O$	CO H_O	$\{ CO_2^{\circ} \}$	$\left\{ \begin{array}{c} H_{2}O\\ OO\\ OO\end{array} \right\}$	H,O	1
30)	$     \nu  (\mathrm{cm}^{-1}) $ (vac.)	1933-2	1932-1	1930-6	1927-8	1926.7	1920	
(figure	line no.	6	10	11	12	13	14	
ABLE 2 (	ref.	44	1 <del>4</del> 1 -	4 4	4	4	┞╼╢	4
[1	band					v2 3.,1 P.6		1
	ident.	$H_{CO}^{H_2O}$	H ₂ O	H ² O	$H_2O$	H ₂ O	H,O	${ m H_2^{ m O}}$
	$\nu (\mathrm{cm}^{-1})$ (vac.)	1951-1	1950-1	1949-3	1943	1939-2	1937-2	1935.4
	line no.	I	67	က	4	ນດ	5	œ


#### 114



MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY



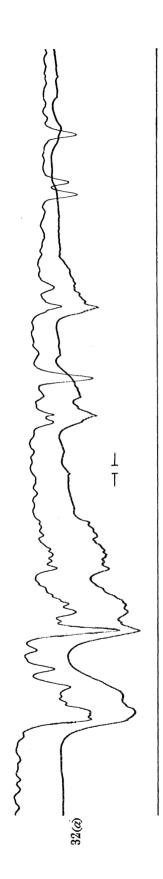


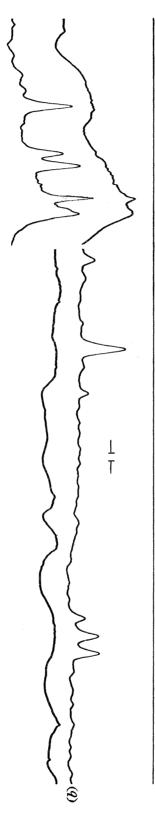
		band		$v_2 y_1^2 P48$									$\nu_2^{-}$	$\nu_2$	$\nu_2^-$		
		ident.	$CO_2$	Ч20 СО О	CO.	CO,	CO2	H ₂ O	CO2	CO2	$CO_2$		${ m H_2O}$	$H_{2}^{-}O$	$\rm H_2^{-}O$		
		$\nu (\mathrm{cm}^{-1})$ (vac.)	1897.9	1895.3		1893.2	1891.7		1889.6		1887-4	1886.0	1884.6	1879.4	1876-7		
		line no.	25	2.6	i	27	28		29		30	31	32	33	34		
		ref.	4	44	·	-	I	Ţ	4	4	Г	4	4	T	4	4	
	1)	band	P24	$\frac{3\nu_2^{ m I}}{3\nu_1}  P26$	1	P30		P32	P34	P36		P38	P40		P42	P44	d.
31	ure 3		$3  u_2^1$	$3\nu_1^1$	V.2	$3\nu_{1}^{2}$	r, 2	$3\tilde{\nu}_{2}^{1}$	$3\nu_2^{ ext{I}}$	$3\nu_{2}^{1}$	ν.,	$3\tilde{\nu}_{1}^{1}$	$3\nu_5^1$	ν. ⁻	$3 \overline{\nu}_2^1$	$3\nu_2^1$	d value
FIGURE 31	TABLE 2 (figure 31)	ident.	co,	'0°C	H ₀	CÔ,	H,Ó	CŐ	CO,	CO,	Н"Õ	CŐ	CO,	Н,Õ	CÔ2	$CO_2$	Interpolated value
	TAB	$\nu \left( \mathrm{cm}^{-1} \right) \left( \mathrm{vac.} \right)$	1914-1	1912-6 1911-0	J	10161		T.ONAT	1906-5	1905.0	1904.5	1903.6	) 10001	1.706T	1900.6	1899.2	* II
		line no.	13	14 14		16		T (	18	<b>19</b>	20	21	00	77	23	24	
		ref.	-	4 4	4	4	4	F	H	I	4	4	H	F	I	4	
		hand		$3 ilde{ u}_2^1 \ Q$													
		ident.	Н,О	çç Çç	_	CO.	CO,	H,Ő	CÔ,	H,Ő	CÔ,	co,	H,Ô	CÔ,	co,	$\mathrm{CO}_2^{-}$	
		$\nu \left( \mathrm{cm}^{-1} \right)$	J 1 0001	~~		1926.2	1924.7	- J - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1923-1	1922-4	1921.7	1920-0	1 0101	1.8161	1917.2*	1915-5	
		line	-		۹ <b>۲</b>	94	1 10		9	7	8	6	•	10	11	12	

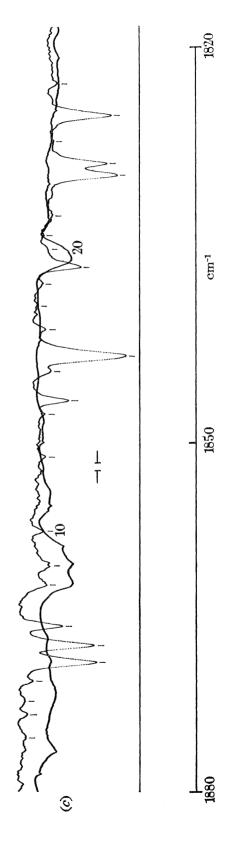
ATLAS OF THE INFRA-RED SOLAR SPECTRUM

1880

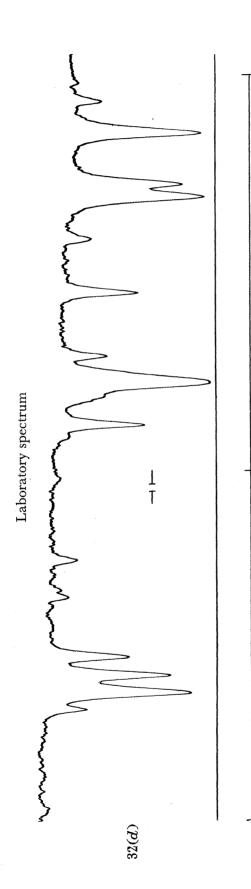
cm⁻¹


1910


1940


ref.

4 4







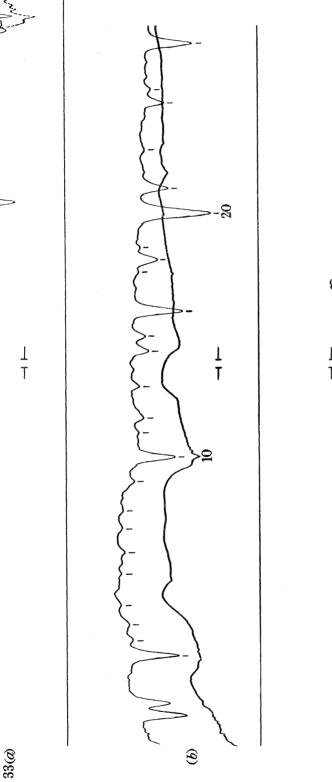


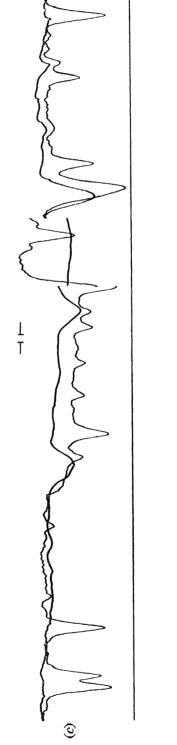




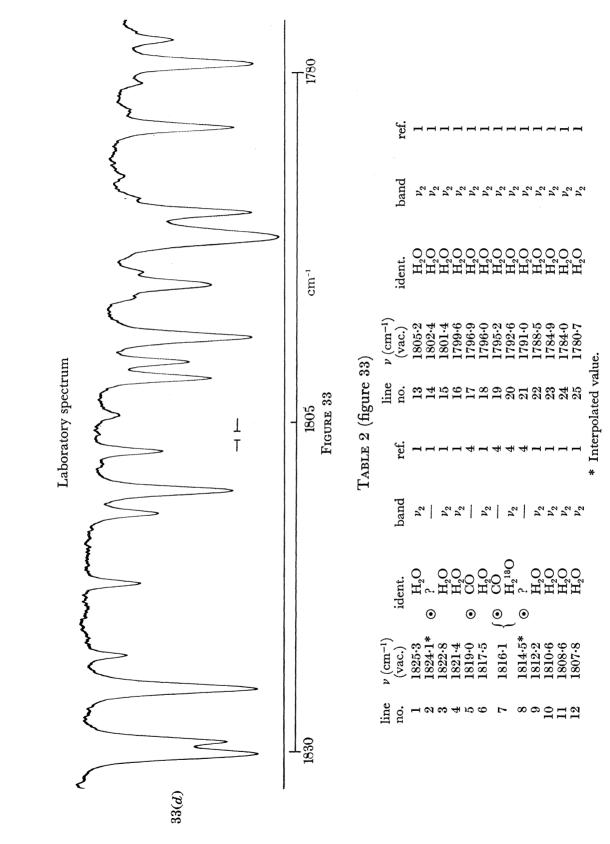

		د	ret	-	Τ	Τ	Π	T	I	Η	4	<b>i</b>	T	Η	4	Π	Τ	
FIGURE 32		-	band	$ u_2 $	$\nu_2$	<i>2</i> ،	$2\overline{\nu}_2 - \nu_2$	$\nu_2^{-}$	$\nu_2$	$\nu_2$	$\nu_2$	$\nu_2$	$\nu_2$	$\nu_2$	,	$ u_2 $	$\nu_2$	I
			ident.	${ m H_2O}$	$H_{2}^{-}O$	$H_{\overline{0}}$	$H_{0}$	$H_{2}O$	$\int H_2 \overline{O}$	( H ₂ ¹⁸ O	$H_{2}^{18}O$	$\rm H_2O$	$H_2O$	$H_{\overline{0}}$	00 ©	$H_2O$	$H_{2}O$	ı
	32)	$\nu (\mathrm{cm}^{-1})$	(vac.)	1844.2	1842.3	1840.5	1839-3	1837.3	1026.1	T.OCOT	1834.8	1833.4	1830.3	1829.4	1827-1	1825-3	1822.8	,
	TABLE 2 (figure :	line	no.	15	16	17	18	19	00	07	21	22	23	24	25	26	27	
		c	rei.	I	4	4	Ī	I	I	I	I	l	I	I	I	I	4	<b>–</b>
		-	band	ν,	,	•	ν,	ν°	r,	<i>ب</i> ،	r 64	<i>2</i> , <i>6</i> , <i>7</i> , <i>6</i>	ν <u>,</u>	<i>ب</i> ،	ν,	72 T		$\nu_2$
		:	ident.	H ₀ O		00		H,O	H,O	H,O	H,O	$H_{0}$	$H_{2}^{-}O$	H _. O	H,O	${ m H}_2^{ m O}$	00000	${ m H_2O}$
		$\nu (\text{cm}^{-1})$	(vac.)	1876.7	1873.5	1872.5	1870.8	1869.3	1867.9	1866.4	1864.1	1861.5	1858.5	1852.4	1848.8	J 8.7.81	0.1±0T	1845.4
		line	no.	I	61	က	4	20	9	1	x	6	10	11	12	12	P1	14

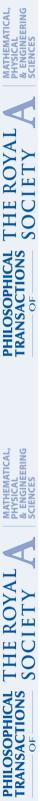
1820

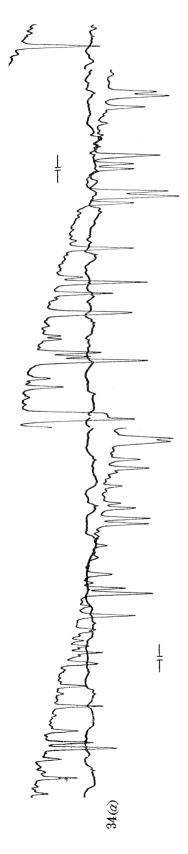

cm⁻¹


1850

1880


Downloaded from rsta.royalsocietypublishing.org











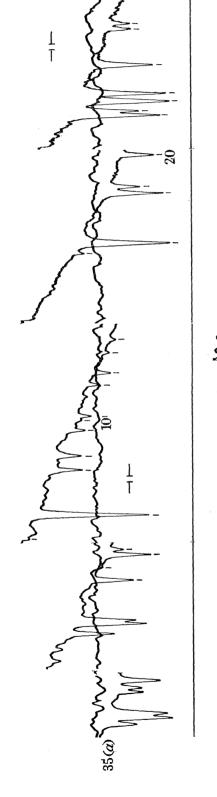



-

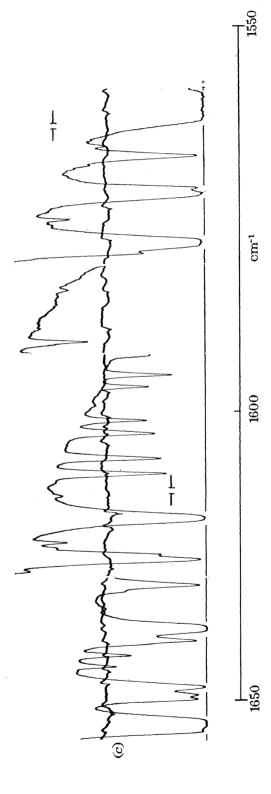




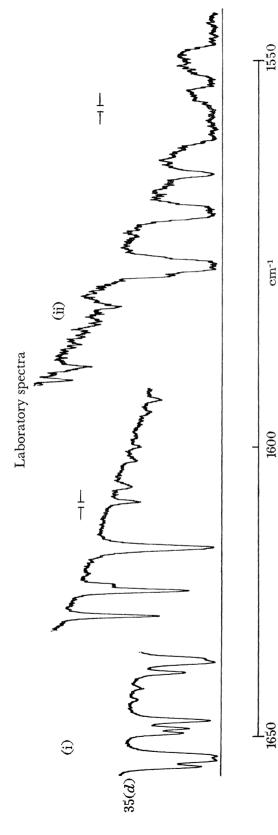
છ


			סי ס
AL, NG			b 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES		1640	ы асталососососососососососососососососососос
<b>A</b> ALA			
THE ROYAL Society			line 10 60 60 60 60 60 60 60 60 60 60 60 60 60
		-	ਰਾ ਰ
PHILOSOPHICAL TRANSACTIONS		cm ⁻¹	34 band v. v. v
PHI TRA	Laboratory spectrum	FIGURE 34	1       1.1       )       ident. $1^{-1}$ 3*       H2       (figure 34)         3*       H2O       -         9       H2O       -         8       H2O       -         8       H2O       -         8       H2O       -         8       H2O       -         9       H2O       -         6       H2O       -         9       H2O       -         1       H2O       -         9       H2O       -         9       H2O       -         1       H2O       -         9       H2O       -         1
VTHEMATICAL, VSICAL ENGINEERING IENCES	Ę	1210	LAB $\nu (cm^{-1}) \nu (vac.)$ (vac.) (vac.) (732.3 * 1732.3 * 1732.3 * 1732.4 * 1722.4 * 1712.4 * 1712.4 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17117.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17217.8 * 17277.8 * 17277.8 * 172777.8 * 172777.8 * 1727777.8 * 17277777.8 * 1727777777777777777777777777777777777
MATHE PHYSIC & ENGI SCIENC			Гі 1 р. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<b>V</b> IV			ממממממממממממר הר ה ה ה ה. ה
THE ROYAL Society			band
			іden 1000000000000000000000000000000000000
PHILOSOPHICAL TRANSACTIONS	34(d)	1780	$^{ u}$ (cm ⁻¹ ) (vac.) 1779-1 1775-6 1771-4 1771-4 1768-2 1768-2 1761-9 1761-9 1761-9 1761-9 1761-9 1765-3 1761-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1748-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-6 1778-7 1778-6 1778-6 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-7 1778-
			line no 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ATLAS OF THE INFRA-RED SOLAR SPECTRUM


16-2




TRANSACTIONS SOCIETY











	ref.	ດເດ	ດດ	זי טי	ο το τα	5 10 U	סי ט	10 I	o vo	
Able 2 (figure 35)	band	V2 V3	7 2 2 7 2	ζζζ	2°2;	, ⁷ 2	72 29	$\nu_2$	$\nu_2$	
	ident.	H ₂ O H,O	H ₂ 0 H,0	H20 H20	H ₂ O	H ² O	Н20 Н,0	$H_{O}^{2}O$	H2O —	
	$\nu (\mathrm{cm}^{-1})$ (vac.)	1589.0 1577.6*	1576.2 $1569.8$	1569-0 1565-1	1560-3 1550-6	1558-9 1558-9	1554.4	1550.3	1545.3 1545.3	٥
	line no.	15 16	$\frac{17}{18}$	19 20	21	3 63 5	20 14	$\frac{26}{26}$	28	Interpolated value
	ref.	ດເດ	סי סי	ນດາດ	ουν	ער טי	ດະດ	ນດາ	ດເດ	Interpola
[-]	band	$\nu_2$	۲2 ۲3	*   ×	2 ² :	7 7 7 7	P2	$\nu_2$	7 2 2 2	*
	ident.	$\Theta$ H ₂ O	Н ₂ 0 Н,0	H ₂ 0 H ₂ 0	H2O	H20 H20	O _c H	$H_{O}^{2}O$	$H_2^{\rm H}O$	
	$\nu  (\mathrm{cm}^{-1}) $ (vac.)	1628.3 1626.2*	$1624 \cdot 2$ $1623 \cdot 3$	1621-5* 1617-4	1610-2	1603.7 1603.7	1601.6	1596-7	1592·3	
	line no.	-1 07	co 4	ي م	) <b>-</b> 0	000	11	12	13 14	

1550

cm⁻¹

FIGURE 35